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Abstract

We present the first application of a central scheme in an unstructured meshless code and
extend it to limit diffusion in shearing flows.

Some numerical diffusion is required in simulations of compressible fluids to maintain
stability and prevent formation of spurious structures. The Kurganov-Tadmor (KT) central
scheme uses a signal velocity and a linear reconstruction of fields to limit numerical diffusion
away from discontinuities.

We implement the KT scheme as a drop-in replacement for the Riemann solver in the
GIZMO hydrodynamics code. Both the original finite-volume version of the KT scheme,
which is quasi-Lagrangian in meshless geometry, as well as a new fully-Lagrangian finite-
mass variant are presented. In addition, to mitigate excessive diffusion, a new shear-based
switch is proposed. The new methods, as well as the default Riemann solver, were applied to
a set of test problems. The results show that, although the KT scheme is more diffusive than
the Riemann solver, it produces correct results with better convergence. The switch is shown
to reduce diffusion in shearing cases, while not compromising stability in the supersonic
regime. The fully-Lagrangian variant is shown to behave similarly to its Riemann solver
counterpart. We conclude that the new variants of the KT scheme are good alternatives to
Riemann solvers in meshless geometry, especially where its simplicity is desirable, such as
for a complex equations of state.

Keywords: central schemes, Riemann solvers, meshless, quasi-Lagrangian, numerical
diffusion, particle methods

1. Introduction

In this paper, we aim to solve the following hyperbolic conservation law,

∂

∂t
U(x, t) +∇ · F(x, t) = 0 (1)
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4 where U is the vector of conserved quantities, and F is the nonlinear convective flux. Of

particular interest is the application to inviscid, incompressible gases, for which U is the
fluid state ,

U =
[
ρ ρvx ρvy ρvz ρeT

]T
(2)

and F defines the fluxes across a plane with unit normal vector n = [nx ny nz]
T :

F =


ρvn

ρvxvn + Pnx
ρvyvn + Pny
ρvzvn + Pnz
ρvn(eT + P

ρ
)

 (3)

Here, ρ is density, P is pressure, v = [vx vy vz]
T is the velocity vector, vn = v · n is its

scalar projection onto n , and eT = e + 1
2
|v|2 is the specific total energy. An equation of

state such as P = (γ − 1)ρe for ideal gases completes the system. We note, however, that
our method is independent of the choice of equation of state.

In the following work, we propose a method for solving the above problem in an un-
structured meshless geometry. In particular, we demonstrate the viability of the Kurganov-
Tadmor (KT) central scheme [1] to compute finite-volume Godunov-like fluxes in said geom-
etry. This, in effect, acts as a replacement for Riemann solvers, simplifying implementation
and suggesting applicability to any general finite-volume geometry. We additionally derive
a novel finite-mass extension of the KT scheme, as well as propose a new numerical diffusion
switch based on splitting the numerical flux between a shearing and a normal component.

2. Background

2.1. Meshless Discretization

We assume a meshless geometry defined by a set of particles, as prescribed in the work
of Gaburov & Nitadori [2], which aims to combine desirable properties from both grid and
particle methods. This method builds on progress from Onate et. al. [3] which introduced
the moving least-squares interpolation to computational mechanics, Dilts 1999 [4] which
produced a smoothed particle hydrodynamics (SPH) implementation, and Lanson & Vila
[5] which introduced meshless particle area and gradient estimators. To this, Gaburov
& Nitadori introduced a Riemann solver to compute fluxes between pairwise interacting
particles, completing a Godunov-style finite-volume framework.

Broadly, this meshless method provides a kernel-based reconstruction similar to SPH. A
key distinction of the meshless method is that it reconstructs a face area and normal, which
allows it to discretize the hyperbolic conservation law (Equation 1) as a Godunov-like form
[5, 2]. This means pairwise fluxes between particles can be computed using a numerical flux
function and the approximate face area. Implementations often compute numerical fluxes
via a slope reconstruction to project the fluid state to the faces then use a Riemann solver
at the face ([2, 6]) – we later show this can be replaced with a central scheme formulation.

2
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4 We briefly review the derivation of this meshless discretization, following closely Section

2.1 of [2], but also refer the reader to Section 2.2 of [5] and Section 2.1 of [6] for a more
complete discussion. Following the usual finite-volume derivation, we seek a solution of the
weak form of the hyperbolic conservation law Equation 1:∫ (

U(x, t)
Dϕ

Dt
+ F(x, t) · ∇ϕ

)
dx dt = 0 (4)

where ϕ is an arbitrary differentiable test function and D
Dt

= ∂
∂t

+ v · ∇ is the material
derivative. For a differential volume dx, ψi(x) represents a fraction of the volume associated
with some particle i, using a partition of unity:

ψi(x) =
W (x− xi, h(x))∑
jW (x− xj, h(x))

(5)

where W is a kernel function with compact support, h is the kernel size, and the summation
is over all particles, including i.

Notice that this enforces
∑

i ψi(x) = 1, allowing the following approximation for some
function f(x), ∫

f(x) dx =
∑
i

∫
f(x)ψi(x) dx (6)

=
∑
i

fi

∫
ψi(x) dx +O(h2

i ) (7)

≡
∑
i

fiVi +O(h2
i ) (8)

where fi = f(xi) denotes the function evaluated at the location of particle i. Equation
7 is a first order Taylor expansion, and assumes |x − xi| = O(hi). Equation 8 defines
Vi =

∫
ψi(x) dx as an “effective volume” for particle i, representing its total volume partition

over all space. Note that in order to get an exact partition of unity, this integration must
be performed over all particles, but an approximation such as the smooth particle number
density is often used [6]. Applying this discretization to the weak form Equation 4 yields,∑

i

∫ (
ViUi

Dϕi
Dt

+ ViFi · (∇ϕ)i

)
dx dt = 0 (9)

dropping the O(h2) terms for brevity. A second-order meshless gradient approximation is
given by,

(∇f)i =
∑
j

(fj − fi)ψαj (xi) (10)

ψαj = Bαβ
i (xj − xi)

βψj(xi) (11)

3
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4 using Einstein summation on α and β. Bi is the renormalization matrix defined as the

inverse of Ei:

Eαβ
i =

∑
j

(xj − xi)
α(xj − xi)

βψj(xi) (12)

Applying this gradient to the second term in Equation 9 gives:∑
i

ViF
α
i (∇ϕ)αi =

∑
i,j

ViF
α
i (ϕj − ϕi)ψαj (xi) (13)

= −
∑
i

ϕi
∑
j

(
ViF

α
i ψ

α
j (xi)− VjFα

j ψ
α
i (xj)

)
(14)

Plugging this into Equation 9, and applying integration by parts to the first term, gives:

∑
i

ϕi

(
d

dt
(ViUi) +

∑
j

[
ViF

α
i ψ

α
j (xi)− VjFα

j ψ
α
i (xj)

])
= 0 (15)

This holds for any test function ϕ, therefore the expression inside the parentheses vanishes.
Defining a numerical flux, F̂ij, for the substitution Fi = Fj = F̂ij (since the left and right
fluxes are necessarily equal to retain pairwise conservation), and defining Aα

ij ≡ Viψ
α
j (xi)−

Vjψ
α
i (xj), produces the Godunov-like form:

d

dt
(ViUi) +

∑
j

F̂ij ·Aij = 0 (16)

Notice that in this form, Aij can be interpreted as an “effective face area” representing the
magnitude of the interaction between particles i and j [6].

The key idea of the meshless discretization is that it can be represented in a Godunov-
like form. As such, neighbouring particles have an associated plane interface, Aij, with
unit normal vector, nij, by which they interact. The distinguishing characteristic of the
meshless discretization is that this this interface is not explicitly constructed geometrically
– as done in grid and moving mesh methods [7] – but rather approximated according to the
aforementioned kernel reconstruction and renormalization [6].

Equation 16 thus discretizes the solution of the global problem into many 1D pairwise
local Riemann problems, solved in the frame of the point of equal volume fractions between
i and j.

To evolve this system over time, we want to find the numerical flux, F̂ij, across each
pairwise interface, Aij – with some time discretization, we solve for the time-averaged flux
at each timestep. This paper is focused on accurate and stable computation of this numerical
flux

2.2. Finite Volume and Finite Mass Discretizations

Having presented the meshless discretization in its Godunov-like form, it is easy to see
how existing machinery can be used to solve this problem. In particular, Gaburov & Nitadori

4
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4 make use of a Riemann solver to find the numerical flux at each pairwise interface [2]. The

same second-order gradient approximation from above is used to project fluid properties
from the particles to the interface, treated with the necessary slope limiters (whose theory
has been extensively shown for stationary grids [8]).

Hopkins 2015 notes that applying the fluxes in this manner produces a finite-volume
method, which he refers to as the Meshless Finite Volume (MFV) scheme [6]. This corre-
sponds to a stationary particle interface , which allows inter-particle mass fluxes and forces a
drift between the actual fluid velocity and the resulting particle velocity. In this way, MFV
is considered quasi -Lagrangian since particles do not exactly follow the fluid flow.

As an alternative, Hopkins 2015 proposes the Meshless Finite Mass (MFM) scheme ,
applying a linear velocity correction to this interface to enforce zero mass flux. In this way,
MFM is fully-Lagrangian as particles follow the fluid velocity (to second-order accuracy)
[6]. Typically, MFV is less diffusive, especially in shear flow, but is more susceptible to
instability and other difficulties with more pathological tests.

2.3. The Numerical Flux

Discretizing Equation 16 for a single particle i with nearest-neighbours j, using a time-
centred discretization, gives [9]:

(17)

Un+1
i −Un

i = −∆t
∑
j

Aij
Vi

F̂ij · nij (18)

Note that the effective face area vector from above has been split into:

Aij = Aijnij (19)

whereAij = |Aij| is the approximation of the area and nij =
Aij

|Aij | is a unit vector representing

the interface normal, pointing away from i and towards j. We also adopt the superscript
notation to represent the time level.

As before, F̂ is the numerical flux function, and may not be exactly equivalent to
the flux function defined above for continuous fields. In particular, numerical diffusion is
required to retain stability of the discretized problem. Without diffusion, nonlinear waves
– such as ones produced at discontinuities – could not be accurately captured. This is
largely a consequence of Godunov’s theorem: monotone, linear schemes are at most first-
order accurate [9]. Here, monotone means non-oscillatory and can be expressed as a sufficient
stability condition to be elaborated on Section 3.3. Notice that the inclusion of the nonlinear
diffusion term circumvents the restriction placed by Godunov’s theorem, but we seek to limit
this nonphysical diffusion to only when the solution could become non-monotone.

The form of Equation 18 is useful as it isolates the numerical flux from the rest of the
fluid solver. We limit our investigation to explicit methods, where F̂ij is evaluated solely

for the current time level n. This means that the method for computing numerical flux, F̂ij

5
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4 , is wholly independent of the particle geometry or the time integrator used, and is thus

translatable to many different solvers.
Additionally, note that the above equation effectively represents the solution for a sin-

gle cell being comprised of many local Riemann problems between it and its neighbours.
For grid-based methods, the only Riemann problems required to be solved are the nearest
neighbours as defined on the grid, such as 6 for the typical rectilinear Cartesian grid (this
could potentially have more for unstructured meshes) . In smoothed particle hydrodynamics
(SPH) and other meshless methods, considerably more local Riemann problems (GIZMO
uses 32 nearest neighbours by default) are needed [6]. Despite the much larger number
of Riemann problems to solve – and consequently greater computational cost – meshless
methods have desirable properties, particularly their Galilean invariance. By allowing par-
ticle advection, we are able to solve these Riemann problems in a convenient local reference
frame rather than the lab frame. This avoids cases where very little dynamics is occuring
physically, but particles are moving fast relative to the background grid, which causes strict
timestep restrictions for grid-based methods.

An important limitation here is that by discretizing the flux solving to simple pair-wise
Riemann problems, we cannot account for the nonlinear interactions of the waves from
different pairs, such as along diagonals in the grid-based case. This effectively limits the
method to second-order accuracy unless these waves coming from neighbouring pairs are
accounted for.

Note that each local Riemann problem is 1-dimensional, albeit embedded in 3-dimensional
space - the velocity vectors are necessarily 3D, and there is thus a difference between abso-
lute velocity ||v||2 and the velocity projection along the normal vector between two particles
vn. This distinction will be relevant later.

3. Numerical Flux Schemes

3.1. Review of Central Schemes

The Kurganov-Tadmor (KT) scheme is a modern refinement of the family of central
schemes that stem from the Lax-Friedrichs (LxF) scheme [1]. The motivation of the LxF
scheme was to apply a central difference approximation of the flux function, with a diffusion
term applied for stability. For a regular 1D grid, the LxF numerical flux is [10]:

F̂n
i+0.5 =

1

2
(Fn

i + Fn
i+1)− ∆x

2∆t
(Un

i+1 −Un
i ) (20)

The first term simply represents the central difference approximation of the flux, and the
second is a diffusive term. This becomes clear when we take the finite difference of the
numerical flux vectors:

F̂n
i+0.5 − F̂n

i−0.5 =
1

2
(Fn

i + Fn
i+1)− ∆x

2∆t
(Un

i+1 −Un
i )− 1

2
(Fn

i−1 + Fn
i ) +

∆x

2∆t
(Un

i −Un
i−1)

(21)

=
1

2
(Fn

i+1 − Fn
i−1)− ∆x

2∆t
(Un

i+1 − 2Un
i + Un

i−1) (22)

6
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4 We note that the numerical diffusion has the form of a central difference approximation to

a Laplacian diffusion of Un
i , with diffusion coefficient equal to ∆x2

2∆t
. As stated previously, all

high-order numerical schemes, even Riemann solvers, add some diffusion to achieve monotone
stability. Riemann solvers achieve this with carefully chosen slope and flux limiters, while
LxF explicitly adds a nonlinear diffusion term [9]. The goal is to minimize this diffusion
while retaining its desired stabilizing property.

Geometrically, LxF evolves a temporary middle state, Un
∗ , between two interacting

states using the flux vector, then projects this “star” state back onto the grid cell by taking
an average over the entire cell. This “star” state is representative of the middle state in a
simplified two-wave model of the local Riemann problem. This creates excessive diffusion
as the intermediate middle state influences the entire cell in the projection step.

3.2. The Kurganov-Tadmor Scheme

The contribution of Kurganov and Tadmor was to limit the domain of influence of the
middle state by bounding it within the area reached by the signal velocity, a, during the
projection step. The KT numerical flux is [1],

(23)

F̂n
ij =

1

2
(Fn,−

ij + Fn,+
ij )− aij

2
(Un,+

ij −Un,−
ij ) (24)

where a superscript (·)− denotes the left interface state (i.e. closer to particle i), and
superscript (·)+ denotes the right interface state (i.e. closer to neighbouring particle j).
We also adopt the face area normal defined by our interface approximation Aij in Equation
19. This defines nij as an outwards-pointing normal from i to j. We additionally note that,
having been derived traditionally on grids, the flux is computed on the frame of a static
interface between i and j, which is exactly the frame used by the 1D local Riemann problem
defined above.

To achieve second-order convergence, the KT scheme uses the states interpolated onto
either side of the interface rather than simply the cell values. Note that while the interface
is clearly defined in structured grids, there is some freedom in defining it in the unstructured
case.

It is known that eigenvalues of the flux Jacobian represents different waves, which for
the Euler flux vector, is:

λ(U) = {vn, vn + c, vn − c} (25)

where vn is again the velocity along the normal direction, now defined by our interface
approximation Aij, and c is the local speed of sound. The KT scheme uses the largest
eigenvalue, evaluated across the interface, as the signal velocity:

(26)

aij = max
U∈C(U−

ij ,U
+
ij)

(λ(U)) (27)

7
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4 where C(U−ij,U+

ij) is a curve connecting the left and right states via the Riemann fan. In
the 1D Riemann problem, this is simply the maximum value evaluated on either side of the
interface:

aij = max{|λ−|, |λ+|} = max{|v−n ± c−|, |v+
n ± c+|} (28)

This effectively states that any waves propagating from the interface between two cells
travel at most at the maximum propagation speed, i.e. the largest acoustic wave speed.
Because of this, there is no need to apply diffusion to the rest of the cell – only diffuse to
the region affected by the propagating waves.

Due to the CFL stability requirement for hyperbolic equations, aij must necessarily be
bounded above by ∆x

∆t
, and thus the KT scheme experiences less numerical dissipation than

the LxF scheme.

3.3. A Stability Criterion

The KT scheme and the LxF scheme before it are both Godunov-like methods, whose
numerical flux can be represented in a general form :

(29)

F̂n
ij =

1

2
[Fn,−

ij + Fn,+
ij −D(Un,+

ij −Un,−
ij )] (30)

where D is an upwind diffusion matrix. For the KT scheme, we have D = aijI as a constant
diagonal matrix of the signal velocity.

To retain stability, the scheme should be non-oscillatory, and thus have the Total Varia-
tion Diminishing (TVD) property [1, 8]:

TV (qn+1) ≤ TV (qn) (31)

With regards to numerical fluxes, Swanson & Turkel 1991 proved that for central schemes,
a sufficient, but not necessary, stability condition based on the Total Variation Diminishing
(TVD) property is [11],

D ≥ |A| = B−1|ΛA|B (32)

where A = ∂F
∂U

is the flux Jacobian, and ΛA is the diagonal matrix of eigenvalues of A. From
this diagonalization, the condition can be rewritten as,

λkD ≥ |λkA| (33)

where λkD is the kth eigenvalue of the matrix D and λkA is the kth eigenvalue of the flux
Jacobian A [12, 13].

Therefore, a the natural choice for D is the spectral radius,

λkD = ρ(A) = max |λkA| ≥ |λkA| (34)

which gives exactly the KT scheme. As well, for a matrix D, the natural matrix choice is
|A|, which represents the Roe-linearized diffusion matrix [14].

8
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4 4. A Finite-Mass KT Scheme

So far, in computing solutions to the local Riemann problems, i.e. computing the nu-
merical flux, it has been assumed that the cell boundary interface is static. This produces
a finite-volume method where the volume of interacting particles are constant - a property
inherited from the grid-based roots of these numerical flux schemes.

It is also possible to allow the interface to move with an arbitrary speed ν. We now derive
a variant of the above KT scheme that includes this interface motion. We follow a similar
reconstruction-evolution-projection method to Kurganov & Petrova 2000 [1]. We assume a
piecewise smooth reconstruction and aim to have a second-order method to be consistent
with the meshless discretization.

4.1. Notation

We first define our geometry. Although we intend to apply the new finite-mass KT
scheme in the above meshless discretization, we first assume the existence of well-defined
volumes, but we can later drop these in favour of the volume approximation of Section 2.1.

We define volume domains with calligraphic lettering: Vi is the volume domain of particle
i, with size Vi. We similarly define area domains: Aij is the interface between particles i and
j, with size Aij. We also define Vij as the volume domain produced by sweeping Aij inwards
towards i by aij∆t and outwards towards j by the same amount. This domain is divided
into two subdomains by Aij, such that Vij = V−ij ∪ V+

ij and Aij = V−ij ∩ V+
ij . Here, V−ij is the

volume on i’s side of the interface, and V+
ij is the volume on j’s side of the interface. We

also define the region inside Vij not belonging to any face volume as the “interior” region
Vi,int = Vi \

⋃
j(Vij).

4.2. Setup

We start with the discretized form from Equation 18, and we seek to find the state at
particle i during the next timestep Un+1

i . We define this state as the mean of some piecewise
smooth intermediate state Wn+1

i within Vi:

Un+1
i =

1

Vi

∫
Vi
Wn+1

i dV (35)

Separating the integration between the face volumes, V−ij , and the interior of i’s volume,
Vi,int,

=
1

Vi

(∫
Vi,int

Wn+1
i dV +

∑
j

∫
V−
ij

Wn+1
i dV

)
(36)

and evaluating the integrals using piecewise averages,

=
1

Vi

(
Vi,intW̄

n+1
Vi,int

+
∑
j

V −ij W̄
n+1
Vij

)
(37)

9
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4 where W̄ denotes the mean of the intermediate state evaluated over the volume defined by

the subscript. Now, note that V−ij is the face volume on i’s side of the interface. It is the
definition of this volume that distinguishes the finite-mass from the original finite-volume
KT scheme. By allowing the interface to move, the right and left face volumes changes. We
revisit this later in the derivation. For now, we proceed with the derivation like in the usual
KT scheme. Substituting in, we have:

Un+1
i −Un

i =
1

Vi

(
Vi,intW̄

n+1
Vi,int

− ViUn
i

)
+

1

Vi

∑
j

V −ij W̄
n+1
Vij (38)

We thus now need to find a expressions for the means of the evolved intermediate states,
W̄n+1.

4.3. Face Volume

Let’s start with finding the means evaluated at the face volume Vij. We start with a re-
constructed state, Wn

ij, evaluated at the face volume at the current timestep. Remembering
that the intermediate state is discontinuous at the interface, we split up the evaluation of
the mean into two face regions, V−ij and V+

ij , representing the volumes taken by extruding
the interface towards i and j respectively:

W̄n
ij =

1

Vij

∫
Vij

Wn
ij dV =

1

Vij

(∫
V−
ij

Wn,−
ij dV +

∫
V+
ij

Wn,+
ij dV

)
(39)

Subtracting the divergent flow leaving the face volume evolves the system to the next
timestep:

W̄n+1
ij = W̄n

ij −
1

Vij

∫ tn+1

tn

∫
Vij
∇ · F dV dt (40)

Applying the divergence theorem:

= W̄n
ij −

1

Vij

∫ tn+1

tn

∮
∂Vij

F · n dA dt (41)

By construction, Vij is the volume produced by extruding the interface inwards and outwards
by aij∆t. Note here that the movement of the interface with velocity ν occurs within this
volume, so there is no need to consider it here. Evaluating the surface integral, we have:∫ tn+1

tn

∮
∂Vij

F · nij dA dt =

∫ tn+1

tn

(∫
Aij

F(Wn,+
ij ) · nij dA−

∫
Aij

F(Wn,−
ij ) · nij dA+O(∆t)

)
dt

(42)

where the ∆t terms represent the faces perpendicular to Aij, with length scale aij∆t. They
become second-order time terms outside the integral, so we hereafter drop them.

10
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4 Assuming W±

ij is constant on the face, i.e. the value changes only along the nij direction),
which is justified by our simplification into 1D Riemann problems, the area integrals simplify:∫ tn+1

tn

∮
∂Vij

F · nij dA dt =

∫ tn+1

tn
Aij
(
F(Wn,+

ij )− F(Wn,−
ij )

)
· nij dt (43)

Evaluating the time integral via Taylor expansion up to second order gives:

= Aij∆t
(
F(Wn,+

ij )− F(Wn,−
ij )

)
· nij +O(∆t2) (44)

Once again, we drop the O(∆t2) terms.
Similarly, the volume integrals from Equation 39 simplify into line integrals:

W̄n
ij =

Aij
Vij

(∫
C−ij

Wn,−
ij dC +

∫
C+ij

Wn,+
ij dC

)
(45)

We once again Taylor expand to evaluate the integral:

=
Aij
Vij

aij∆t
(
Wn,−

ij + Wn,+
ij

)
(46)

Plugging in Equations 44 and 46 into Equation 41:

W̄n+1
ij =

Aij
Vij

∆t
(
aij
(
Wn,−

ij + Wn,+
ij

)
− (F(Wn,+

ij )− F(Wn,−
ij )) · nij

)
(47)

Once again, by construction, Vij = 2Aijaij∆t, thus completing our expression for the face
volume mean:

W̄n+1
ij =

1

2

((
Wn,−

ij + Wn,+
ij

)
− 1

aij
(F(Wn,+

ij )− F(Wn,−
ij )) · nij

)
(48)

4.4. Interior Volume

We now turn our attention to evaluating the mean at the interior volume at particle
i, Vi,int. Once again, we can evaluate W̄n+1

i by looking at the divergent flow leaving the
volume:

W̄n+1
i,int = W̄n

i,int −
1

Vi,int

∫ tn+1

tn

∫
Vi,int

∇ · F dV dt (49)

Applying the divergence theorem:

= W̄n
i,int −

1

Vi,int

∫ tn+1

tn

∮
∂Vi,int

F · n dA dt (50)

11
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i is the mean of a piecewise
smooth Wn

i . Additionally, by construction, Vi,int = Vi \
⋃
j (Vij), therefore Vi \ Vi,int =⋃

j (Vij). We once again construct the face volumes by the face area sweeping inwards by
aij∆t, to get:

Vi,intW̄
n
i,int − ViUn

i =

∫
Vi,int

Wn
i dV −

∫
Vi
Wn

i dV = −
∫
Vi\Vi,int

Wn
i dV = −

∑
j

Aijaij∆tW
n,−
ij

(51)

Looking now at the surface integral, this time it is generated by the faces between i and
its neighbours j. Performing the same process as above to evaluate the space and time
integrals, we have:∫ tn+1

tn

∮
∂Vi,int

F · n dA dt =
∑
j

∫ tn+1

tn

∫
Aij

F(Wn,−
ij ) · nij dA dt (52)

=
∑
j

∫ tn+1

tn
AijF(Wn,−

ij ) · nij dt (53)

=
∑
j

Aij∆tF(Wn,−
ij ) · nij (54)

Substituting in Equations 51 and 54 into the first term of Equation 38 to get:

1

Vi

(
Vi,intW̄

n+1
i,int − ViUn

i

)
= −∆t

Vi

∑
j

(
AijaijW

n,−
ij + AijF(Wn,−

ij ) · nij
)

(55)

4.5. Constructing the Numerical Flux

We now can construct the numerical flux by substituting in Equations 48 and 55 into
Equation 38:

Un+1
i −Un

i = ∆t
∑
j

Aij
Vi

(
−aijWn,−

ij − F(n,−ij ) · nij +
V −ij

2Aij∆t
(Wn,−

ij + Wn,+
ij )

−
V −ij

2Aijaij∆t
(F(Wn,+

ij − F(Wn,−
ij ))) · nij

)
(56)

Now, V −ij is the volume produced by the interface extruded inwards (towards i) with signal
velocity aij. By adding in an arbitrary velocity ν, we define the movement of the interface
along nij, following the same sign convention (positive ν means movement towards j). The
inside face volume is thus:

V −ij = Aij(aij + ν)∆t (57)

12
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Un+1
i −Un

i = −∆t
∑
j

Aij
Vi

(
aijW

n,−
ij + F(n,−ij ) · nij +

aij + ν

2
(−Wn,−

ij −Wn,+
ij )

+
aij + ν

2aij
(F(Wn,+

ij − F(Wn,−
ij ))) · nij

)
(58)

Rearranging, we get:

Un+1
i −Un

i = −∆t
∑
j

Aij
Vi

(
1

2

(
F(Wn,+

ij ) + F(Wn,−
ij )

)
− aij

2

(
Wn,+

ij −Wn,−
ij

)
+

ν

2aij

(
F(Wn,+

ij )− F(Wn,−
ij )

)
− ν

2

(
Wn,+

ij + Wn,−
ij

))
(59)

Notice that this is now in the same form as Equation 18. Finally, the state at the current
time level, Wn,±

ij , is evaluated as the reconstructed particle state on the interface, Un,±
ij .

The numerical flux of the finite-mass KT scheme is thus:

(60)

F̂n
ij =

1

2

(
Fn,−
ij + Fn,+

ij

)
− aij

2

(
Un,+
ij −Un,−

ij

)
+

ν

2aij

(
Fn,+
ij − Fn,−

ij

)
− ν

2

(
Un,+
ij + Un,−

ij

)
(61)

Notice that it is nearly identical to the finite-volume KT scheme, but with extra correction
terms dependent on the speed of the interface movement, ν. It thus retains the existing
simplicity of the KT scheme, and does not require any more information.

In particular, values used in the finite-mass KT scheme are identical to those used in the
finite-volume variant – velocities, v, and speeds vn, aij, ν, are defined in the same reference
frame as in the finite-volume scheme. We recall that the frame used was the quadrature
point where the volume fractions of particles i and j were equal. In the original finite-volume
KT scheme, fluxes were computed across this reference frame – i.e. the interface’s position
was fixed relative to the particles. While we retain this frame, we computed fluxes according
to an interface that moves with speed ν along nij relative to the frame.

4.6. Defining the Interface Speed
Next, we seek to define a ν that preserves particle masses. Returning back to the Riemann

problem, we let ν be the speed of the contact discontinuity, S∗. While many methods exist
for approximating this contact wave speed, in practice we can simply solve for the ν which
gives zero density flux. . That is, we evaluate Equation 61 for the density field, with the
left hand side set to zero, and isolate for ν. This gives:

νij = aij

(
ρ−ijv

−
n,ij + ρ+

ijv
+
n,ij − aijρ+

ij + aijρ
−
ij

ρ−ijv
−
n,ij − ρ+

ijv
+
n,ij + aijρ

+
ij + aijρ

−
ij

)
(62)

This is once again in the spirit of the original the KT scheme.

13
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4 5. A New Signal Velocity

5.1. Motivation

Our principal goal is to construct a flux scheme which is less diffusive than the KT
scheme and computationally efficient. We will do so by focusing on the phase speed aij used
in the upwind diffusion matrix D.

We choose D = kI, where k is a scalar, to retain the simplicity and flexibility of the KT
scheme. We note that there are numerous matrix definitions of D, which allows substantial
freedom in reducing diffusion, especially when vn � c and subsequently there exists a wide
range of λkA. These are, however, as computationally expensive as using the Roe-linearized
diffusion matrix, from which many approximate Riemann solvers are derived, and we seek
to avoid such complexity.

In developing this new signal velocity, we refer back to the eigenvalues of the flux Jaco-
bian. For a 1D Riemann problem embedded in 3D space , we have:

λ(U) = {vn, vn + c, vn − c, vn, vn} (63)

where the vn eigenvalue has degenerate eigenvectors. Physically, the eigenvalues correspond
to distinct wave types - waves travelling at the sound speed relative to the flow (vn ± c) are
acoustic waves while waves travelling with the flow (vn) are entropy waves. In particular,
the vn ± c have the potential to be genuinely nonlinear as shocks and rarefactions, while vn
waves are linearly degenerate and exclusively represent contact discontinuities [15].

Now, consider a stationary contact discontinuity. Applying the KT scheme means that
the states within a∆t of the discontinuity are averaged as they are considered within the
domain of dependence. This manifests as excessive numerical diffusion that incorrectly
smears the discontinuity over time. This is especially problematic for shearing flows, which
further increases signal speed and therefore the domain of dependence, causing momentum
diffusion near the shear. However, the actual signal velocity must be used for the correct
resolution of the nonlinear waves, specifically shocks. Thus, we want to keep the full diffusion
for shocks, but reduce it in shearing flows.

5.2. The Switch

Notice that regardless of the flow, the signal velocity is at least vn. The distinction
between nonlinear waves and contact discontinuities is the ±c term. Thus, we would like
to add a switch, α, on the sound speed that responds to the flow being either affected by
primarily a shock, or a shear. We modify equation 28 as:

(64)

aij = max
{
|v−n ± αc−|, |v+

n ± αc+|
}

(65)

To do so, remember that even though each pairwise interaction constitutes a 1-dimensional
Riemann problem, the momenta themselves are 3-dimensional. This means that we can
compare the vector of the momenta to the normal vector between the two particles. If the
momentum difference between two particles is perpendicular to the normal vector, then the

14
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4 local flow is likely shearing. The closer the momentum difference becomes to pointing along

the normal vector, then the more significant nonlinear waves become. We thus propose the
following switch:

(66)

α =

{∣∣∣ ∆(ρvn)
||∆(ρv)||2

∣∣∣ , ||∆(ρv)||2 > δ,Nonlinear Case

0, ||∆(ρv)||2 ≤ δ,Linear Case (no diffusion)
(67)

where ||f ||2 =
√
f 2
x + f 2

y + f 2
z is the L2 norm , the operator ∆(·) = (·)+ − (·)− is the left

and right state difference. All values here are defined in the reference frame defined above
– the frame of the interface that preserves particle volume fractions. δ imposes a small
cutoff to prevent numerical divergence in still flows. Note that placing this value too high
could cause insufficient numerical diffusion and excessive noise. δ = 0.001ρ̄c̄ was found to
be sufficient in numerical tests , where (̄·) = 1

2
((·)+ + (·)−) denotes the mean of the left and

right states.

(68)

A schematic of this method in the context of two interacting particles and why this method
is less diffusive is shown in Figure 1. From this, we see that we should expect diffusion to be
decreased with this new switch, given that it limits the domain of dependence (determined
by a∆t) to be less than or equal to that of the KT scheme. Here, diffusion occurs in the
next step, where the middle state is projected back to the original particles via averaging -
a larger domain of dependence means that the computed middle state is allowed to be more
dominant in the averaging.

6. Implementation Details

We use the GIZMO code presented in Hopkins 2015 as the base for our implementation
[6]. It includes various numerical methods, but we focus here on the two meshless schemes
highlighted in [6]. Specifically, these are the original meshless discretization of Gaburov &
Nitadori [2], Meshless Finite Volume (MFV), as well as the Meshless Finite Mass (MFM)
scheme introduced in [6]. For these meshless methods, GIZMO employs both a gradient
limiter as well as a pairwise slope limiter to project particle states to their interfaces during
reconstruction, as detailed in Appendix B of [6]. To solve the local Riemann problems, it,
by default, applies the approximate Riemann solver HLLC using Roe-averaged wave speeds.

We implement our methods by replacing just the Riemann solver with the numerical
fluxes as computed by the KT scheme. We stress that the only component being changed is
how numerical fluxes are computed – all other parts such as the meshless area approximations
and both limiters are left unchanged. The inputs to replacement numerical flux schemes are
the same interface states used as inputs to the Riemann solver.

15
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Figure 1: A schematic of a local Riemann problem between two particles ui and uj , with the treatment of
different numerical flux methods. Solid black lines represent the particle states at time n, and solid dark
grey lines represent a slope-limited gradient estimate. Dotted light blue lines are waves of the exact solution
of the Riemann problem. Dashed grey lines represent the domain of dependence of the LxF scheme, notice
that it influences a full half of both cells. Dashed orange lines represents the smaller domain of dependence
of the KT scheme, at a distance of a∆t away from the interface. Dashed blue lines represents the domain of
dependence using a Riemann solver. Dashed red lines represents the domain of dependence using the new
switch, which is at most identical to the KT scheme for exactly colliding particles and lower anywhere else.
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4 7. Test Problems

We test six different methods: GIZMO-MFV, GIZMO-MFM, KT-MFV, KT-MFM,
SWITCH-MFV, and SWITCH-MFM. The first two are the meshless methods presented
in Hopkins 2015 which implement an approximate Riemann solver for its numerical flux
computation [6]. Here, we use the unmodified, publicly-available version of GIZMO. The
next two are implementations of the KT central schemes as a drop-in replacement for the
Riemann solver in GIZMO. KT-MFV is the original formulation of the KT scheme, shown
on Equation 24 [1]. KT-MFM is the alternative finite-mass version where the particle inter-
face moves with the contact wave, as given by Equation 61. The last two are identical to
the KT schemes, except for the adjusted signal velocity on Equation 65 with the switch on
Equation 67.

Here, we compare the behaviour of the above six methods with a range of purely
hydrodynamic tests. The KT scheme is more diffusive than the Riemann solver, as expected,
but still captures the qualitative form of the solution, but with better stability properties.
The switch behaves as intended, reducing diffusion in shearing tests, while being as accurate
as the original KT scheme in shocktube problems. The MFM variant for each method follows
the same trends when compared to the MFV variant of the same method, being in general
more diffusive for most problems.

7.1. Shearing Flow

We begin with a relatively simple test to illustrate the problem with the KT scheme. We
assume a homogeneous fluid with ρ = 1, e = 1, and a sinusoidal shaped shearing velocity in
the y-direction, vy = sin(πx). This initial condition is a steady state, with no actual fluxes
between particles. The particles should simply be advected. Thus, any change in state is
solely a result of numerical diffusion. The shearing velocity profile at t = 5 is shown in
Figure 2. Notice that the other methods remain very close to the original sinusoid, while
there is noticable decay at the peaks in the KT scheme.

7.2. 2D Gresho Vortex

As a more difficult test, we consider a C1 version of the triangular vortex by Gresho &
Chan [16], where the points at r = 0.2 and r = 0.4 have been smoothed using piecewise
parabolic functions. The azimuthal velocity is defined by,

vφ(r) =



5r, (0 ≤ r < 0.16)

−62.5r2 + 25r − 1.6 (0.16 ≤ r < 0.24)

2− 5r (0.24 ≤ r < 0.36)

31.25r2 − 27.5r + 6.05 (0.36 ≤ r < 0.44)

0 (r > 0.44)

(69)
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Figure 2: Shearing flow at t = 5, with particles represented as magenta dots and x’s representing binned
particle averages, separated by one particle width. Notice that the peaks of the sine wave of the KT scheme
are highly decayed, while the other methods approximately retain the original sinusoid (in green).

and the pressure by,

P (r) =



25
2
r2 (0 ≤ r < 0.16)

15625
4
r4 − 3125

3
r3 + 825

2
r2 − 80r + 2.56 ln( r

0.16
) + 464

75
(0.16 ≤ r < 0.24)

25
2
r2 − 20r + 4 ln(r) + 2.56 ln(1.5)− 4 ln(0.24) + 11

3
(0.24 ≤ r < 0.36)

976.563
4

r4 − 1718.75
3

r3 + 1134.38
2

r2 − 332.75r + 36.6025 ln(r)

+6.56 ln(1.5)− 36.6025 ln(0.36) + 77.13154890048− 152
15

(0.36 ≤ r < 0.44)

49.6801625856− 176.81
3

+ 36.6025 ln(11
9

) + 6.56 ln(3
2
) (r > 0.44)

(70)

and zero radial velocity. The velocity and pressure profiles of the C1 version compared to
the original are shown in Figure 3. This test was performed in 2D using particles initially
distributed in a regular grid, and a simulation domain of [−1, 1]× [−1, 1] to allow the vortex
space to decay without influencing itself through the periodic boundary conditions.

This setup is a steady-state solution, where the rotational force is exactly cancelled out
by the pressure gradient. While the inner portion (x < 0.2) is in rigid body rotation and is
relatively easy to simulate accurately, the outer region of the vortex has particles shearing
against each other as the inner particles rotate with a faster angular velocity than the outer
particles. Since there should be no mass or momentum transfer radially, this setup allows us
to assess the amount of numerical diffusion required, with deviations from the steady-state
solution being known to be due to excessive numerical diffusion.

18
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Figure 3: The initial condition of the Gresho-Chan vortex, for both the C1 (labelled smoothed) version as
well as the original piecewise linear version from Gresho & Chan 1990 [16]. The left (blue) axis shows the
azimuthal velocity profile and the right (green) axis shows the pressure profile that exactly cancels out the
rotational force to produce a steady-state solution.

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -1.1608 -1.1448 -0.9098 -0.9046 -1.0776 -1.0806
L2 -1.0487 -1.0401 -0.8837 -0.8747 -1.0013 -1.0107
L∞ -0.6890 -0.7561 -0.6988 -0.6909 -0.7390 -0.7763

Table 1: Convergence rates for the Gresho-Chan vortex in 2D computed within r < 0.5 on t = 3.0.

We can quantitatively measure the error of the solution through various norms, which
can be used to look at the convergence of each method. We choose to plot the l1, l2, and
l∞ error norms of the azimuthal velocity for particles within r < 0.5 at time t = 3.0, which
are shown in Figure 4, with convergence rates shown on Table 1. We see that convergence
for this problem is approximately linear in L1 and L2. This matches results from Hopkins
2015 for GIZMO [6], as well as other existing results for particle-based methods [17]. We
see that in all three norms, the Riemann solver methods have the best convergence rates as
well as smaller errors in general. We emphasize the degree to which the switch improves on
the KT scheme, especially in convergence. The convergence rates of the SWITCH methods
are much closer to the rates of the Riemann solver methods, and is actually better when
measured in the L∞ norm. The L∞ result is due to reduced noise, which is not surprising
for a more diffusive method.

7.3. 3D Gresho Vortex

We repeat the above Gresho Vortex setup (Equations 69 and 70) in 3D with a glassy
initial particle distribution and a simulation domain of [−1, 1] × [−1, 1] × [−0.5, 0.5]. A
glassy distribution means the particles are arranged in no particular order, but enforcing a

19



A
cc

ep
te

d
M

an
u

sc
ri

pt
.

Pu
bl

is
he

d
A

rt
ic

le
at

do
i.o

rg
/1

0.
10

16
/j

.jc
p.

20
20

.1
09

45
4

(a) L1 Errors (b) L2 Errors (c) L∞ Errors 

Figure 4: Error norms for the azimuthal velocity of the Gresho-Chan vortex using different methods in 2D.
Norms were computed for particles within r < 0.5 at t = 3.0 on a log-log plot against the effective 1D
resolution. Initial conditions have an effective 1D resolutions of multiples of 16, up to 128.

near-constant nearest neighbour distance for all particles. In this way, we avoid dominant
axes but keep a near-uniform particle density.

The results for an effective 1D resolution (i.e. the inverse of the average particle sepa-
ration) of 64 are shown in Figure 5. We see that while the azimuthal velocity for the KT
scheme is almost nearly wiped out at t = 4, the inclusion of the new switch better preserves
the structure of the vortex, albeit with a small negative impact on the particle deviation.
This small increase in noise is an expected tradeoff of reducing the amount of diffusion ap-
plied, given that diffusion inherently smooths small scale local deviations. Also notice that,
due to the diffusive conversion of kinetic to potential energy, the pressure for the KT scheme
rises at the center, whereas the switch reduces this increase.

On the other hand, the Riemann solver schemes retain the original structure for longer,
but quickly deviate from the steady state solution around t = 3 via a non-physical instability.
This numerical instability is likely seeded by small (grid-scale) particle noise from the glassy
initial condition, and demonstrates a pitfall in applying too little diffusion. The particle
noise should be dominated by the physical structure, especially given that the smoothed
initial condition already aids in preventing numerical instability by allowing the gradient of
the velocity and pressure to change over several particles, rather than instantaneously in
a sub-resolution scale. Longer simulations showed that KT and SWITCH never developed
such structure, and evenly dissipate energy until the velocity is uniformly zero. This time-
dependent behaviour is shown in Figure 6, where we see that both KT and SWITCH have
a consistent exponentially decaying kinetic energy, while the other two schemes transition
from a very slow initial decay to a very rapid decay as an instability forms. Here, we also see
the extra diffusion in the MFM variants compared to MFV, with the kinetic energy decaying
faster.

We once again plot the three error norms against resolution, shown in Figure 7. We
see that in general, the Riemann solver is more accurate than KT and SWITCH, but that
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Figure 5: Results for the smoothed Gresho Vortex with an effective 1D resolution of 64. (a) Azimuthal
velocity profiles (blue points) and pressure profiles (brown points) for numerical solutions of the Gresho-
Chan vortex at t = 4.0 (≈ 2.9 rotations). Exact steady-state solution is shown as green lines for velocity
and magenta lines for pressure. (b) Velocity slice coloured from blue (vφ = 0) to red (vφ = 1).
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Figure 6: Kinetic energy over time of the Gresho-Chan vortex on a semilog plot, normalized by the initial
kinetic energy. Notice the clear change in behaviour for the GIZMO-MFV and GIZMO-MFM schemes at
around t = 3, due to an instability forming.

(a) L1 Errors (b) L2 Errors (c) L∞ Errors 

Figure 7: Error norms for the azimuthal velocity of the Gresho-Chan vortex using different methods in 3D.
Norms were computed for particles within r < 0.5 at t = 3.0 on a log-log plot against the effective 1D
resolution. Initial conditions have an effective 1D resolutions of multiples of 16, up to 128.
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4 GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -0.441 -0.532 -0.480 -0.466 -0.756 -0.726
L2 -0.348 -0.439 -0.518 -0.504 -0.748 -0.720
L∞ 0.003 -0.069 -0.398 -0.386 -0.498 -0.446

Table 2: Convergence rates for the Gresho-Chan vortex in 3D computed within r < 0.5 on t = 3.0.

KT and SWITCH methods are better converged. In the l1 and l2 norms, the errors of the
Riemann solver methods do not decrease following some power law, but erratically increases
and decreases as a result of the unpredictable formation of secondary structures seeded by
particle noise . This is less so the case in lower resolutions, which are too coarse to allow
the formation of secondary structures, meaning the physical vortex remains dominant. In
a sense, the secondary structures formed in GIZMO-MFV and GIZMO-MFM are of a fixed
resolution, and at lower resolutions it simply is absorbed into the actual physical structure.
This is also shown in later tests. Even more interestingly, the l∞ norm of GIZMO-MFV and
GIZMO-MFM methods do not converge at all, suggesting that there are always at least a
few particles in an ill-conditioned situation due to particle noise . We would thus like to
stress the value of a method that reliably diffuses away grid-scale noise rather than evolving
them physically.

Fitting a power law gives the convergence rates shown on Table 2. From this, we see
that the SWITCH methods have the best convergence rates, with around N−0.75

1D , though
all methods converge sublinearly – showing increased difficulty with the added degree of
freedom in 3D. We once again wish to point out the degree to which the switch improved
the convergence rate of the KT scheme, jumping from a similar rate to GIZMO-MFV and
GIZMO-MFM, to well above. The switch converges so well that it rivals the solution of the
Riemann-solver based methods at N1D = 64.

7.4. Colliding Flows Shocktube

To demonstrate that the new scheme still applies the appropriate amount of diffusion
to safely smooth discontinuities, we consider a simple 1-dimensional Riemann problem rep-
resenting two flows colliding with a constant velocity. We use a homogeneous initial fluid,
with ρ = 0.125 and P = 0.05, differing only in fluid velocity between two fluid domains:

vx =

{
1.0 x < 0

−1.0 x > 0
(71)

This generates two outwards-moving shocks with the horizontal velocity completely can-
celling in the post-shock region. We simulate this using a 3-dimensional glassy initial con-
dition with constant particle masses, with results shown in Figure 8.

As shown, all methods are able to capture the discontinuity by smoothing the shocks over
about three particles. In general, the more diffusive methods have less particle dispersion,
less post-shock ringing, and less particle inter-penetration. As previously noted, higher dif-
fusivity reduces dispersion by smoothing out local variability. With regards to the difference
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Figure 8: Results for the colliding flows test at t = 2.5. From top to bottom, mass density, internal energy,
pressure, collision velocity (vx), and z-projected slice. The black line represents binned averages of the
numerical solution, with x’s separated by effective 1-dimensional resolution. The green line represents the
analytic solution. In the upper four rows, blue points represent particles originally in x < 0 and magenta
points represent particles originally in x > 0. In the last row, blue points represent particles originally in
x < 0 and yellow points represent particles originally in x > 0.
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4 between KT and SWITCH methods, the increased dispersion comes from reduced diffusion

along the y- and z-axes, allowing particles located laterally to have larger differences in fluid
properties.

Higher diffusivity also reduces particle inter-penetration as particles near the boundary
at the beginning of the simulation are able to convert their kinetic energy into heat faster via
the diffusive mechanism. Looking at the slices, the penetration is inhomogeneous: in certain
regions the left fluid penetrates further and others, the right fluid penetrates further. This
suggests that the inhomogeneity is seeded by particle noise in the initial condition, which the
less diffusive methods interpret as possible instability. Post-shock ringing does not satisfy
the TVD condition, and is a symptom of insufficient diffusion to maintain stability. Only
the KT scheme, which was previously shown to satisfy a sufficient condition for TVD, has
no noticable oscillation, while the rest have in varying degrees.

The majority of the error in this colliding flows test occurs at the initial collision interface
(x = 0), and is a consequence of the well-known wall-heating problem [18]. Wall-heating
stems from the rapid conversion of kinetic energy into thermal energy at the collision in-
terface. Since the momentum equations find the correct pressure as the shock forms, the
density is forced to fall; lack of conduction keeps error in the energy local. Noh 1987 showed
this heating is purely a consequence of numerical diffusion [18], and it is shown later that this
leads to nonuniform convergence for the inviscid problem, as higher resolutions decreases
the width of the wall heating, but not its magnitude [19].

Interestingly, the MFM variants suffer less than MFV from wall heating. For KT and
SWITCH, the MFM variants have slightly larger density noise, stemming from not being
able to diffuse away density variations due to the enforced particle masses.

7.5. Shearing Shock

Next, we consider a test where the fluid has both shock and shear characteristics. This
test is important for validating the new switch, which controls diffusion depending on the
relative amount of shocking and shearing of the fluid locally. We consider a shocktube setup
similar to that used in Section 7.4, with the same uniform density and pressure. In addition
to a colliding x-component of the velocity, we add opposing y-components to produce a
transverse velocity jump across the interface:

vx =

{
−δx x < 0

δx x > 0
(72)

vy =

{
δy x > 0

−δy x > 0
(73)

The magnitudes δx, δy are varied to test fluids with different proportions of shock and
shear. The solution involves a complete cancellation of the x-component velocity in the
postshock region, leaving a pure shear flow. Ideally, the addition of the switch should not
adversely affect the performance of the method as the flow transitions from a pure shock to
a pure shear. We expect the SWITCH methods to be slightly worse for a pure shock, due
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(a) First Test   vx=1.0 (b) Second Test   |v|2=1.0 

Figure 9: (δx, δy) used for the two tests stated in Section 7.5

.

to a slight increase in noise seen in Figure 8, but better for a pure shear where the reduced
diffusion truly applies.

We test two variants of this problem. We let θ be the angle between (1, 0) (representative
of the normal of the interface) to a velocity vector (δx, δy). In both tests, we use angles
θ ∈ [0, 14π/32] of multiples of π/32. For the first test, we hold constant δx = 1 and vary
δy to get θ, while for the second test we hold constant the magnitude ||(δx, δy)||2 = 1 and
vary both δx and δy. The entire set of velocities used for both tests are shown in Figure 9.
Angles 15π/32 and π/2 were avoided since the first test would involve infinitely large δy.

The l1 errors are shown in Figure 10. Overall, we find that the switch behaves well even
in regimes between shocks and shears. Since this is a variant of the above colliding flows
problem, the error - especially for the first test - is dominated by wall heating. This is
apparent when comparing the MFV and MFM variants, where the MFM variants having
less error due to the reduced wall heating. We also note that because the Riemann problem
(as formulated in GIZMO) is Galilean invariant, the only difference between this problem
and the non-shearing problem is during the formation of the shock, when particles initially
collide. The propagation of the shock is identical for all tests, since the y-component of
velocity is constant across the shock and thus irrelevant in the rest frame of the particle pair
interface. This further indicates that errors remain localized around x = 0.

Noh 1987 shows that the wall heating error is dependent on the amount of numerical
diffusion applied [18]. For the KT and SWITCH methods, numerical diffusion is proportional
to the wave propagation speed, a. Since the sound speed, c, remains constant in this
problem, we expect numerical diffusion to be proportional to ||v||2 alone. For the first test,
||v||2 = 1/ cos(θ), while for the second, ||v||2 = 1. As shown by Figure 10, we get close to
the expected result of the errors being ∝ (cos(θ))−1 for the first test and near constant for
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(a) First Test   vx=1.0 
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Figure 10: L1 Error norm for the two shearing shocktube problems. (a) The first shearing shocktube problem
has vx = 1.0, with vy being varied so as to produce θ ∈ [0, 14π/32] of multiples of π/32. Here, the first four
variables (i)-(iv) are shown in a log-log plot against cos(θ) to better represent the expected dependency. (b)
The second shearing shocktube problem has ||v||2 = 1.0, with both vx and vy being varied so as to produce
θ ∈ [0, 14π/32] of multiples of π/32. The L1 norm was computed for x ∈ [−2, 2].
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4 GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -1.321 -1.613 -1.597 -1.685 -1.485 -1.630
L2 -1.043 -1.251 -1.218 -1.318 -1.146 -1.275

Table 3: Power-law fits for the errors in density of the first version of the shearing shock test at t = 2.5.

the second. The power law slope of the L1 and L2 errors in density are shown on Table 3.
We see the power law fits are slightly steeper than the expected cos(θ)−1, in both norms. A
more rigorous error analysis could be used to explain why this is the case, but is unnecessary
for the purpose of validating the new switch.

We now examine on how the switch behaves relative to the other methods. As expected,
in density and internal energy – the variables directly affected wall heating – SWITCH is
very similar to the usual KT scheme for small θ, but has smaller error in more shear-like
flows. This trend is matched in other variables for the constant-δx test. The second test is
perhaps more indicative of the behaviour of the methods, as it removes the increasing velocity
magnitude – and thus increased wall heating – as the angle is increased. The advantage of
the switch is clearly shown in density and internal energy - it once again matches the error
for small θ, but has significantly less error for shearing flows. The switch produces slightly
worse results in pressure, although this error is very small in magnitude and is primarily due
to noise. The switch has larger errors in collision velocity due to stronger post-shock ringing,
but better for the shearing velocity. The unnecessary diffusion of the shear component in
the KT scheme is clear from the shearing velocity error, which is strongly dependent on
the angle; note that all methods increase in error since the magnitudes of the y-velocities
themselves increase according to angle.

7.6. Kelvin-Helmholtz Instability

Finally we consider the Kelvin-Helmholtz (KH) instability, which occurs when a shearing
flow is slightly perturbed, causing an evolution of waves into vortices [7]. This example tests
how the methods handle the generation of mixing and turbulence via a dynamic instability.
We use the setup from McNally et. al. [20], where a 1× 1× 0.125 periodic box is separated
into two halves in equilibrium with properties:

ρ =

{
2 y ∈ (−0.25, 0.25)

1 otherwise
(74)

e =

{
1.875 y ∈ (−0.25, 0.25)

3.75 otherwise
(75)

The shear is defined by:

vx =


−0.5 + 0.5e(y+0.25)/L y ∈ [−0.5,−0.25)

0.5− 0.5e(−0.25−y)/L y ∈ [−0.25, 0)

0.5− 0.5e(y−0.25)/L y ∈ [0, 0.25]

−0.5 + 0.5e(0.25−y)/L y ∈ [0.25, 0.5)

(76)
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4 where L is a smoothing parameter. We choose to use both a thin shear interface L = 0.00625

and a thicker shear interface L = 0.025 – at the resolution used, the shear transition occurs
along 4 particles for the former and 16 for the latter. The instability is seeded by a vertical
velocity perturbation to the interface:

vy = 0.01 sin(4πx) (77)

Once again, we use a glassy initial particle distribution, with constant particle masses such
that the number density of particles is doubled for the middle band. The box resolution is
192 × 128 × 16 particles. Density slices for times t = 1, t = 2.5, and t = 8 are shown in
Figure 11 for the thick shear transition, and Figure 12 for the thinner transition.

The reduction of diffusion provided by the switch allows it to capture slightly more
vortices than the original KT scheme in both cases. Additionally, we note that even at the
longer time t = 8, the overall structure with the switch does not greatly vary from that
without the switch, unlike the result of GIZMO-MFV and GIZMO-MFM. We see from the
t = 1 result for the thin transition test, that the Riemann solver methods qualitatively
do not agree with the other four methods – the vortices produced are distorted. This is
likely caused by particle noise in the initial condition. The more diffusive KT and SWITCH
schemes are able to damp this grid-scale noise, while the Riemann solver methods treat it is
a physical small-wavelength mode in the KH problem. Such small-wavelength modes thus
generate smaller scale vortices which distort the KH vortices. This is confirmed by tests
with smaller box resolutions, where unphysical smaller vortices did not develop, suggesting
that the grid-scale modes seeded by particle noise could not develop faster than the KH
vortices. Additionally, we note that this increased mixing causes the mode amplitude to
be much larger than with the other two methods.

Agreement of Riemann solver methods is closer when the transition width is increased to
16 particles, although it still greatly deviates at long time. Even in this case, grid-scale noice
causes formation of smaller vortices just before before the velocity-seeded vortices. The
increased interface width, however, causes difficulty for the KT and SWITCH methods, with
the vortices evolving thicker and more blurred. It is apparent that even with the switch,
there is still much shearing diffusion allowed to occur, thickening the interface. In this case,
however, the diffusion is largely limited to density. Plotting a slice coloured based on the
origin of the particles as shown in Figure 13, we find that the switch allows the vortices
to develop much further, but the structure is obscured by diffusion in density. As well, we
see that the Riemann solver methods suffer greatly from particle penetration (i.e. mixing)
in the vortices, with the two phases of the fluid starting to become homogeneous. It may
be possible to choose a different, more aggressive switch on the density to further limit the
amount of diffusion but maintain good behaviour in momentum and energy.

Lastly, we note that for KT and SWITCH, the difference between MFV and MFM vari-
ants are very minor, with MFV forming slightly more defined vortices than MFM. One no-
table difference, however, is that SWITCH-MFM greatly reduces particle inter-penetration,
especially at later time. The Riemann solver methods, MFV and MFM, produce drastically
different results, with MFV characterized by more sharply defined shear boundaries than
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t = 8.0 

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM SWITCH-MFV SWITCH-MFM 

Figure 11: Density slice for the Kelvin-Helmholtz instability with a thick interface (16 particle widths). Red
represents a density of 2, and blue represents a density of 1.
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t = 1.0 

t = 2.5 

t = 8.0 

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM SWITCH-MFV SWITCH-MFM 

Figure 12: Density slice for the Kelvin-Helmholtz instability with a thin interface (4 particle widths). Red
represents a density of 2, and blue represents a density of 1.
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(a) Thick Initial Interface (16 Particles) 

(b) Thin Initial Interface (4 Particles) 

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM SWITCH-MFV SWITCH-MFM 

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM SWITCH-MFV SWITCH-MFM 

Figure 13: Slice of the KH instability at t = 2.5 for both the (a) thick initial interface and (b) thin initial
interface, coloured by the initial particle locations. Blue represents particles initially in the high density
middle band, and yellow represents particles originally in the low density upper and lower bands.

MFM. The sharp boundary for GIZMO-MFV demonstrates the effectiveness of the mesh-
less method to mimic moving-meshes where the boundary would be sharply defined by the
mesh boundaries. Here, however, it simply fails to provide enough diffusion to damp un-
intended grid-scale noise , leading to rapid growth of small wavelength modes that destroy
the intended vortices.

It is possible to consider the Riemann solver methods here to be more accurate, under the
interpretation that grid-scale noise in the initial condition should be resolved and allowed to
generate small scale vortices. We argue, however, that such susceptibility to grid-scale noise
is undesirable for numerical methods since grid scale fluctuations are, by definition, poorly
resolved and unlikely to be physically significant.

8. Computational Cost

Exact Riemann solvers are very computationally expensive, given that many iterations
are required for each Riemann problem. For this reason, many authors choose to use ap-
proximate Riemann solvers. GIZMO by default uses the HLLC solver with Roe-averaged
wave speed estimates, but falls back on an iterative solver if this fails [6]. By comparison,
the KT scheme incurs a similar computational cost to the HLLC solver, which is apparent
in the timing data shown on Table 4. We find that the resulting times are all similar -
within a 5% margin. The default MFV and MFM are generally fastest, with the exception of
KT-MFV being slightly faster than GIZMO-MFV for the shocktube problem. The KT and
SWITCH methods are very close in timing, given that the switch is very simple to compute.
The MFM variants of the KT and SWITCH methods are marginally slower than their MFV
counterparts, owing to the extra computation required to find the interface speed ν.

31



A
cc

ep
te

d
M

an
u

sc
ri

pt
.P

u
bl

is
he

d
A

rt
ic

le
at

do
i.o

rg
/1

0.
10

16
/j

.jc
p.

20
20

.1
09

45
4 Shearing Flow Shocktube

GIZMO-MFV 539m26s 3m16.02s
GIZMO-MFM 521m41s 3m8.80s

KT-MFV 548m15s 3m15.26s
KT-MFM 549m52s 3m16.90s

Switch-MFV 543m14s 3m20.73s
Switch-MFM 548m49s 3m17.81s

Table 4: Wallclock time for the shearing flow problem (Section 7.1) and the θ = 0 shocktube problem 7.4.
The CPU used is an AMD R7 1700 in both cases, using 8 cores for the shearing flow problem and 1 core for
the shocktube. The shearing flow was progressed to t = 5, while the shocktube was progressed to t = 0.5.

9. Conclusion

We have demonstrated that the Kurganov-Tadmor central scheme is a viable alternative
to Riemann solvers in computing fluxes in numerical methods for solving the gas dynamics
equations in unstructured meshless geometry, such as particle-based methods. However,
we find that the scheme suffers from excessive numerical diffusion, especially in regions of
shearing flow, even though it is qualitatively accurate.

We have proposed to improve the KT scheme by adding a switch that depends on the
local (pairwise) shear of the fluid, to limit the amount of numerical diffusion in shearing
cases. As well, we present a new fully-Lagrangian version of the original finite-volume-based
KT scheme.

We have validated these new schemes for a range of physically relevant test cases. The
results of these tests show that the new schemes behave well in a wide range of applications
involving shear, shocks, and nonlinear instabilities. In particular, we demonstrate better
convergence of the KT scheme, with the inclusion of the switch offering reduced numerical
diffusion in shearing flows with minimal stability impact in shocks. The fully-Lagrangian
reformulation was also shown to achieve properties similar to the MFM method of Hopkins.

In conclusion, the KT scheme is a simple scheme for calculating numerical fluxes in gas
dynamics simulations that can be made significantly more accurate with the addition of a
simple switch based on the strength of the local shear. We recommend the modified KT
scheme as an improved numerical flux method for a wide variety of gas dynamics simulations,
especially those relying on mesh-free geometries, such as the astrophysical hydrodynamics
code GIZMO.
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