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Fig. 1. Liquid rope coiling instability solved using tiled quadratic regions of size 73, with 3-cell padding between. Cutaway view shown on the left, featuring
regular grid cells in red and our reduced model interior regions in green.

Standard liquid simulators apply operator splitting to independently solve
for pressure and viscous stresses, a decoupling that induces incorrect free
surface boundary conditions. Such methods are unable to simulate fluid
phenomena reliant on the balance of pressure and viscous stresses, such
as the liquid rope coil instability exhibited by honey. By contrast, unsteady
Stokes solvers retain coupling between pressure and viscosity, thus resolving
these phenomena, albeit using a much larger and thus more computationally
expensive linear system compared to the decoupled approach. To accelerate
solving the unsteady Stokes problem, we propose a reduced fluid model
wherein interior regions are represented with incompressible polynomial
vector fields. Sets of standard grid cells are consolidated into super-cells,
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each of which are modelled using a quadratic field of 26 degrees of freedom.
We demonstrate that the reduced field must necessarily be at least quadratic,
with the affine model being unable to correctly capture viscous forces. We
reproduce the liquid rope coiling instability, as well as other simulated
examples, to show that our reduced model is able to reproduce the same fluid
phenomena at a smaller computational cost. Futhermore, we performed a
crowdsourced user survey to verify that our method produces imperceptible
differences compared to the full unsteady Stokes method.
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Modeling and simulation.
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1 INTRODUCTION
Viscous, incompressible liquids exhibit a variety of intriguing phe-
nomena: a misplaced step on boggy ground leaves one’s boot stuck
in thick wet mud; cake batter poured from a mixing bowl folds
rhythmically back and forth [Suleiman and Munson 1981]; drop
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a stream of honey just so and one finds it coiling in a rope-like
manner [Ribe et al. 2012]. Applications of viscous fluid simulation
are also not limited to these minor delights—industrial applications
use grease and lubricants, geologists study convection currents of
the Earth’s mantle, and even daily life finds viscous fluids in foods
and cosmetic products. Naturally then, viscous liquids have been
a subject of interest in computer graphics going back more than
twenty years [Carlson et al. 2002].
The physical behaviours of fluids have been distilled into a pair

of conservation laws called the Navier-Stokes equations. In com-
puter graphics, this system is typically simplified by way of operator
splitting, which involves solving smaller subproblems in turn [Brid-
son 2015]. Advective and body forces are often solved separately,
leaving just the coupled pressure and viscous shear terms. Con-
sidered together, these two terms are governed by the unsteady
Stokes equations, which are the primary focus of our work. While
frequently also solved separately [Batty and Bridson 2008], Larionov
et al. [2017] showed that the coupling of these two terms is essential
in simulating the correct coiling behaviour of liquid ropes; Taka-
hashi and Batty [2020] likewise demonstrated its importance for
coupling with rigid bodies. However, this increased fidelity comes
at a cost: the resulting unified system of equations is much larger
than for decoupled methods, leading even recent work on octree-
based [Goldade et al. 2019] and multigrid [Shao et al. 2022] viscosity
solvers to opt for decoupling.
We aim to reduce the cost of the unified Stokes solve by consid-

ering spatial adaptivity and model reduction. The former focuses
computational cost at regions of interest while reducing resolution
elsewhere [Losasso et al. 2004]; the latter captures most of the flow
behaviour with as few degrees of freedom as possible [Treuille et al.
2006]. The method of Goldade et al. [2020] can be viewed as combin-
ing these: they propose a pressure projection method that couples
one or more coarser interior domains, whose velocities are described
by incompressible affine vector fields, to a surface region composed
of uniform grid cells, treated with a standard discretization. This
method achieves spatial adaptivity and dimension reduction with-
out complicated stencils or data structures, thus making it relatively
easy to implement.
Extending these ideas, we propose the first acceleration scheme

for the unified Stokes solve via the use of incompressible polynomial
vector fields. We show that an affine vector field is insufficient for
the Stokes problem, and that a quadratic vector field is the lowest
order model able to achieve proper, convergent treatment of viscous
forces on the fluid interior. We confirm that our method retains the
attractive features of the Stokes approaches, and in particular still
reproduces the expected liquid coiling instability (Figure 1).

Finally, since any adaptive or reduced model entails some (prefer-
ably mild) deviation in behavior compared to the fully refined origi-
nal model, we seek to evaluate this effect. While various numerical
or geometric measures could be proposed, we observe that, in the
context of animation, such measures are often a proxy for the "visual
error" experienced by human viewers. Therefore, drawing inspira-
tion from pioneering work by Um et al. [2017], we propose to interro-
gate this question perceptually: we perform a two-alternative forced-
choice study with 500 participants to confirm that our method is

visually indistinguishable from the more costly fully uniform solu-
tion.

2 RELATED WORK
Standard Eulerian and hybrid methods for solving incompressible
flow in computer graphics use staggered pressure and velocity sam-
ples, originally developed for the Marker-and-Cell (MAC) method
of Harlow and Welch [1965]. This scheme was introduced into com-
puter graphics by Foster andMetaxas [1996] who solved the pressure
and velocity updates explicitly, assuming voxelized solid boundaries.
In response to the timestep limitations imposed by explicit solvers,
Stam [1999] developed an unconditionally stable method using semi-
Lagrangian advection and decoupled implicit solvers for pressure
and viscosity.

To leverage desirable properties of both Eulerian and Lagrangian
methods, Particle-in-Cell (PIC) and related hybrid methods were
developed. The first formulation of (PIC) was created by Harlow
[1962], which suffered from excessive dissipation. Brackbill and
Ruppel [1986] subsequently developed the Fluid-Implicit-Particle
(FLIP) method as a remedy. Zhu and Bridson [2005] applied it to
incompressible flow, and suggested a weighted average of the two
methods to reduce noise. Jiang et al. [2015] constructed a locally
affine variation of the (PIC) interpolation method in order to pre-
serve angular momentum previously lost with each grid-to-particle
interpolation, and was later extended to be locally polynomial by
Fu et al. [2017]. We use the affine PIC (APIC) framework to perform
the advection step of our implementation, though we note that the
reduced Stokes solver we develop is agnostic to the choice of advec-
tion procedure. Bridson [2015] provides additional background on
standard Eulerian/hybrid fluid simulators for computer animation.

Large viscosity presents additional challenges and opportunities.
Carlson et al. [2002] focused on solving highly viscous liquids, adopt-
ing an implicit Laplacian-based smoothing of velocity in place of
Stam’s Fast Fourier Transform (FFT)-based viscosity. Their treat-
ment of free surface boundaries was found to produce incorrect
translational motion, later corrected by Fält and Roble [2003]. Batty
and Bridson [2008] adopted a variational approach to achieve im-
proved zero-traction free-surface boundary conditions and thereby
recover rotational motion needed for buckling fluids. Larionov et al.
[2017] extended the variational approach to solve unsteady Stokes
flow, coupling the pressure and viscosity equations together. This
method is able to recover cylindrical coiling behaviour in place of
the random buckling of prior decoupled methods, and forms the
base uniform grid solver that we build our reduced method on top
of. Outside of Eulerian volumetric approaches, Bergou et al. [2010]
were able to successfully recreate meandering and coiling patterns
of viscous threads on a conveyor using a discrete rod-based model,
and Batty et al. [2012] adapted a thin shell model to simulate vis-
cous sheets. Likewise, viscous liquids have seen extensive study
using Lagrangian smoothed particle hydrodynamics approaches
(e.g., [Takahashi et al. 2015; Weiler et al. 2018].) While more exotic
non-Newtonian liquids have also been widely explored, we restrict
our focus to purely Newtonian viscous liquids.
Solid-Fluid Coupling methods serve as a basis for our work. The

two-way rigid body-fluid coupling of Batty et al. [2007] introduced
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an operator that converted boundary fluid pressures into gener-
alized forces that act on the solid. The solid’s intended behaviour
determines the constraints that define the degrees of freedom of
its generalized velocity. Takahashi and collaborators extended this
approach to incorporate viscous forces and simultaneous rigid-rigid
contact handling [Takahashi and Batty 2020; Takahashi and Lin
2019]. Goldade et al. [2020] replaced the rigid body constraint used
by Batty et al. [2007] for rigid-fluid coupling with an incompressible
affine field intended to represent a coarse fluid region, drawing on
the same analogy as the rigid (RPIC) and affine (APIC) variants of
PIC developed by Jiang et al. [2015]. Extending this analogy, our
polynomial extension of Goldade’s model is akin to the polynomial
extension of APIC to PolyPIC [Fu et al. 2017].

Acceleration methods
Spatial adaptivity can be a useful strategy in trading accuracy for
computational cost. Shi and Yu [2004] and Losasso et al. [2004]
introduced the use of an octree data structure as a method for fo-
cusing computation on areas of interest by reducing grid resolution
elsewhere, translating the uniform grid-based stable fluids method
into stencils suited to irregular octree grids. Tetrahedral meshes
have also been explored, first with precomputed static meshes by
Feldman et al. [2005], then with dynamic meshes by Klingner et al.
[2006], and later with embedded free surface and solid boundary
conditions by Batty et al. [2010]. Batty and Houston [2011] and
Goldade et al. [2019] considered spatially adaptive Eulerian solvers
for the (decoupled) viscosity equations, on tetrahedral meshes and
octree grids, respectively Chentanez et al. [2007] used tetrahedral
meshes with an algebraic multigrid solver for pressure. Similarly,
methods based on Voronoi or power diagrams rather than tetrahe-
dral meshes have also been developed [Brochu et al. 2010; de Goes
et al. 2015; Sin et al. 2009], and later adapted to improve octree
t-junctions [Aanjaneya et al. 2017]. Goldade et al. [2020] presented
a reduced model pressure solver as a method for spatial adaptivity
with uniform cells near the boundary and coarsened reduced model
tiles on the interior, which we directly adopt for our method. Ap-
proaching the same computational efficiency goals, Edwards and
Bridson [2014] used variable polynomial degrees (𝑝-adaptivity) on a
discontinuous Galerkin method to focus computation near the fluid
surface. Compared to our use of polynomials to allow coarsening
on interior cells, they apply higher-order polynomials on the fluid
surface to resolve finer detail out of a globally coarse grid. Another
similarity to our method is that both use polynomial elements or
regions with irregular, non-convex shapes, as also achieved by Tao
et al. [2022] via the virtual element method.
Reduced fluid models, such as ours, use reduced sets of variables

to decrease computational cost. Treuille et al. [2006] used principal
component analysis to find the reduced basis of a target dimension
that minimizes reconstruction error. In place of a global basis, Wicke
et al. [2009] constructed large cube-shaped simulation primitives
called ‘tiles’ with local bases; coupling along faces is handled by
shared boundary bases. Our reduced regions use a different interior
model, but away from boundaries their shapes simplify to become
rectangular tiles, coupled together by surrounding fine-grid cells.

ΩR

ΩC

∂ΩC

∂ΩR

∂ΩL

Fig. 2. Schematic of various domains used in our reduced solver. The
Cartesian domain, Ω𝐶 , and reduced domain, Ω𝑅 , form a decomposition of
the full liquid domain, Ω𝐿 = Ω𝐶 ∪Ω𝑅 , such that they share only a boundary,
Ω𝐶 ∩ Ω𝑅 = 𝜕Ω𝑅 ⊆ 𝜕Ω𝐶 .

De Witt et al. [2012] used Laplacian eigenfunctions as a divergence-
free basis. This scheme was later extended by Cui et al. [2018], who
reduced memory cost with discrete sine and cosine transforms as
well as introducing eigenfunctions to support Neumann boundary
conditions. Ando et al. [2015] solved for pressure on a reduced-
dimension grid and constructed an upsampler to compute corrected
velocities that respect the free surface boundary condition. Da et al.
[2016] presented a boundary-only method for high surface tension
fluids, avoiding computation of internal volumetric degrees of free-
dom. The reduced solver of Goldade et al. [2020] uses an affine basis
to reduce degrees of freedom allocated to interior regions of the fluid.
We extend this idea to higher-order polynomial bases for simulating
the decoupled viscosity step and the coupled Stokes problem.

3 METHODS

3.1 A Reduced Model for Viscosity
We begin constructing our reduced model solver by first looking at
only the decoupled viscosity step treated with implicit Euler,

u − u∗

Δ𝑡
=

1
𝜌
∇ · (𝜇 (∇u + (∇u)⊺), (1)

where u is the velocity field being solved for, u∗ is an input divergence-
free velocity field, 𝜌 is density, 𝜇 is the viscosity coefficient, and Δ𝑡
is the timestep size. The variational method of Batty and Bridson
[2008] equivalently expresses the solution as the minimizer of

𝐽 [u] =
∭

Ω𝐿

(
𝜌

2


u − u∗



2 + Δ𝑡𝜇





∇u + (∇u)⊺
2





2
𝐹

)
𝑑𝑉 . (2)

We separate this integration into the uniform Cartesian regions, Ω𝐶 ,
and the reduced fluid regions, Ω𝑅 , such that Ω𝐶 ∩Ω𝑅 = 𝜕Ω𝑅 ⊆ 𝜕Ω𝐶

and Ω𝐶 ∪Ω𝑅 = Ω𝐿 . These domains and their boundaries are shown
in Figure 2. Note that the boundary region of the Cartesian region,
𝜕Ω𝐶 includes both its shared boundary with the reduced region,
𝜕Ω𝑅 , and the true liquid boundary (surface) 𝜕Ω𝐿 . This relation holds
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assuming we immerse the reduced fluid region(s) entirely within
the liquid. While Figure 2 shows a single reduced region, in practice
we follow Goldade et al. [2020] in dividing the interior fluid domain
into many distinct reduced tiles, separated from each other by thin
layers of uniform cells. We selected a default tile size of 323, with a
3-cell padding, which we found heuristically worked well for our
examples.

We split the velocity field into u𝐶 = u 𝐼Ω𝐶
and u𝑅 = u 𝐼Ω𝑅

, where
𝐼𝐴 is the indicator function of a domain 𝐴. This yields the objective

𝐽 [u𝐶 , u𝑅] =
∭

Ω𝐿

𝜌

2


u𝐶 − u∗𝐶



2 + 𝜌

2


u𝑅 − u∗𝑅



2
+ 𝜌 (u𝐶 − u∗𝐶 ) · (u𝑅 − u∗𝑅)

+ Δ𝑡𝜇





∇u𝐶 + (∇u𝐶 )⊺
2





2
𝐹

+ Δ𝑡𝜇





∇u𝑅 + (∇u𝑅)⊺
2





2
𝐹

+ 2Δ𝑡𝜇
〈
∇u𝐶 + (∇u𝐶 )⊺

2 ,
∇u𝑅 + (∇u𝑅)⊺

2

〉
𝐹

𝑑𝑉 , (3)

with ⟨·, ·⟩𝐹 as the Frobenius inner product. Minimizing this objective
function in u𝐶/𝑅 solves the system

u𝐶 − u∗
𝐶

Δ𝑡
=

1
𝜌
𝜇∇ · (∇u𝐶 + (∇u𝐶 )⊺) in Ω𝐶 , (4)

u𝑅 − u∗
𝑅

Δ𝑡
=

1
𝜌
𝜇∇ · (∇u𝑅 + (∇u𝑅)⊺) in Ω𝑅, (5)

u𝐶 = u𝑅 on 𝜕Ω𝑅 . (6)

Notice that this is the viscosity system, Equation 1, solved separately
for regions Ω𝐶 and Ω𝑅 , with two-way coupling being handled by
the matching condition on their mutual boundary. We make the as-
sumption of constant viscosity (note the 𝜇 outside of the divergence,
as compared to the original viscosity update in Equation 1), as a
limitation of the reduced model. Because the reduced model does
not use individual stress degrees of freedom on the interior, there
is no definition of a spatially-varying viscosity field, and we thus
necessarily assume a constant viscosity value in our work. (Gener-
alizing to polynomially varying coefficients would be an interesting
extension.)

Choosing a particular model for the velocity field in the reduced
region, u𝑅 , determines its generalized velocity degrees of freedom,
v𝑅 , via u𝑅 = J⊺v𝑅 . Adopting the usual staggered grid discretization
on the Cartesian region [Batty and Bridson 2008], we can then con-
struct a discretization of the corresponding first-order optimality
conditions of the combined variational problem in terms of uni-
form Cartesian velocities, u𝐶 , and generalized velocities, v𝑅 , for the
reduced model:[
A11 A12
A⊺12 A22

] [
u𝐶
v𝑅

]
=

[ 1
Δ𝑡M𝐶𝑊

𝑢
𝐹
𝑊𝑢

𝐿
u∗

1
Δ𝑡M𝑅v∗𝑅

]
, (7)

A11 =
1
Δ𝑡

M𝐶𝑊
𝑢
𝐹𝑊

𝑢
𝐿 + 2𝑊𝑢

𝐹 D
⊺ (𝑊 𝜏

𝐹
)−1𝝁𝑊 𝜏

𝐿
D𝑊𝑢

𝐹 ,

(8)
A12 = 2𝑊𝑢

𝐹 D
⊺𝝁DJ⊺, (9)

A22 =
1
Δ𝑡

M𝑅 + 2JD⊺𝝁DJ⊺ . (10)

Here, D is the discrete symmetric gradient operator, andM𝐶 ,M𝑅

are mass matrices. As defined in Larionov et al. [2017], weights𝑊 𝑎
𝐿

represent the volume fraction of the unit cell around a point sample
𝑎 that is within the liquid domain Ω𝐿 . Analogously,𝑊 𝑎

𝐹
are the

fractional cell weights for the fluid domain Ω𝐹 , which represents
the entire simulation domain outside of any solids.
Thus A11 and A22 express the independent updates of the fluid

in uniform and reduced regions, respectively, and A12 expresses
their coupling. We have assumed that all cell weights associated
with v𝑅 are unity, which is true if those samples are immersed
within the active fluid domain, Ω𝑅 ⊂ Ω𝐿∩𝐹 , such that its boundary
is sufficiently far from both boundary conditions, 𝑑𝑖𝑠𝑡 (𝜕Ω𝑅, 𝜕Ω𝐿 ∪
𝜕Ω𝐹 ) > Δ𝑥 where 𝑑𝑖𝑠𝑡 (𝐴, 𝐵) = inf{∥𝑥 − 𝑦∥ | 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵} is a
distance metric. We now simply need to determine an appropriate
mapping J from the uniform degrees of freedom to generalized
velocities.

3.2 Affine Velocity Fields
As in the work of Goldade et al. [2020], we initially define an affine
description of a reduced fluid velocity field as

u𝑅 (x) = u𝑐𝑜𝑛𝑠𝑡 + G(x − x𝐶𝑂𝑀 ) (11)

where G = ∇u𝑅 is the gradient 2-tensor and x𝐶𝑂𝑀 is the reduced
region’s center of mass. Since the 3D velocity gradient matrix has
the structure

G3𝐷 =



𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧


, (12)

it follows that its trace gives the divergence, Tr(G3𝐷 ) = 𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 +
𝜕𝑤
𝜕𝑧 = ∇ · u, and similarly for the 2D case. This relation implies
that enforcing the usual incompressibility constraint can be done
by simply enforcing zero trace, ∇ · u𝑅 = Tr(G) = 0. The required
degrees of freedom for representing G are thus reduced by 1, as
shown in the following forms:

G2𝐷 =

[
𝑎11 𝑎12
𝑎21 −𝑎11

]
, G3𝐷 =


𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 −(𝑎11 + 𝑎22)

 . (13)

The velocity within some interior region Ω𝑅 can thus be represented
by a generalized velocity vector v𝑅 of 5 elements in 2D (2 constant
and 3 linear) and 11 elements in 3D (3 constant and 8 linear). We
define a matrix C that gives the Euclidean velocity at any point x.
The 3D case follows straightforwardly from the following 2D case,

u𝑅 = C(x)v𝑅 (14)

=

[
1 0 𝑥 𝑦 0
0 1 −𝑦 0 𝑥

]
v𝑅 (15)

with 𝑥 = 𝑥−𝑥𝐶𝑂𝑀 and similarly for𝑦. We will also use this equation
when needed to find a least-squares fit of our generalized velocities
to a given set of uniform velocities.
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1× Resolution
1× Tile Size

2× Resolution
2× Tile Size

Overlay

(a) Grid refinement with same physical tile size.
1× Resolution
1× Tile Size

2× Resolution
1× Tile Size

Overlay

(b) Grid refinement with shrinking physical tile size.

Fig. 3. The affine model (yellow, orange) fails to match the reference
simulation (pink outline) on a viscous beam test. (a) A comparison
between a base resolution affine simulation (yellow, left) and a simulation
with both double spatial resolution and tile dimensions (orange, middle),
such that the reduced tiles retain the same physical size under refinement.
The right column overlays the two. (b) A similar comparison between a
base resolution result (yellow, left) and a double resolution result without
modifying the tile dimensions (orange, middle). All images show 2D cutaway
views of 3D simulations with thin lines representing fluid surfaces for each
method, reduced model tiles shown filled in with their respective colours,
and solid boundaries shown in black. Uniform grid cells are not shown for
clarity, but take up all gaps between interior regions and the fluid surface.
Initial conditions are shown in grey, consisting of a homogeneous fluid with
𝜌 = 1 and 𝜇 = 100. Results are for 𝑡 = 1.6, using a decoupled pressure-
viscosity fluid solver. All affine results sharply disagree with the uniform
reference, even under spatial refinement.

Using this transformation, we can define a generalized mass ma-
trix using the fluid’s kinetic energy as follows:∭

Ω𝑅

𝜌𝑅

2 ∥u𝑅 ∥2 𝑑𝑉 =

∭
𝜌𝑅

2 ∥CvR∥2 𝑑𝑉 (16)

=
1
2v
⊺
𝑅

(∭
Ω𝑅

𝜌𝑅C⊺C 𝑑𝑉

)
v𝑅 (17)

=
1
2v
⊺
𝑅
M𝑅v𝑅 (18)

The matrixM𝑅 =
∭

Ω𝑅
𝜌𝑅C⊺C 𝑑𝑉 is exactly the required general-

ized mass matrix.

3.3 Problems with the Affine Description
By the above definition of an affine field, the velocity gradient G =

∇u𝑅 , which corresponds to G = DJ⊺v𝑅 in the discrete setting. Since
G is constant in an affine field, it thus follows that the JD⊺DJ⊺ term
in Equation 10 becomes zero, since it represents a second derivative:
A22 = 1

Δ𝑡M𝑅 + 2JD⊺𝝁DJ⊺ = 1
Δ𝑡M𝑅 . This simplification implies

that we no longer solve for viscous forces at all within the reduced
region. The second equation is now strictly a velocity matching
constraint on the boundary between the reduced model and the rest
of the fluid, with no interior dynamics being performed.

1× Resolution
1× Tile Size

2× Resolution
2× Tile Size

Overlay

(a) Grid refinement with same physical tile size.
1× Resolution
1× Tile Size

2× Resolution
1× Tile Size

Overlay

(b) Grid refinement with shrinking physical tile size.
1× Resolution
1× Tile Size

1× Resolution
0.5× Tile Size

Overlay

(c) Shrinking physical tile size with no resolution refinement.

Fig. 4. The quadratic model (sky blue, dark blue) more closely
matches the reference simulation (pink outline) on a viscous beam
test. (a) A comparison between a base resolution affine simulation (sky
blue, left) and a simulation with both double spatial resolution and tile
dimensions (dark blue, middle), such that the reduced tiles retain the same
physical size under refinement. The right column overlays the two. (b) A
similar comparison between a base resolution result (sky blue, left) and a
double resolution result without modifying the tile dimensions (dark blue,
middle). (c) A comparison between a base simulation result (sky blue, left),
and an identical resolution result with half the tile size (thus halving the
physical size). The visualizations and problem parameters mimic Figure 3,
and the results are again computed with a decoupled pressure-viscosity
fluid solver. The quadratic model’s results show much closer agreement
with the reference result compared to the affine model in Figure 3.

The issue is thus not in the representative power of an affine field
with respect to velocity, but rather of the viscous stresses. Because
an affine field lacks a second derivative, it lacks any information for
being able to evolve itself, and consequently it induces no stresses
back onto the surrounding uniform grid. An alternative interpre-
tation is to view the action of viscosity as a Laplacian smoothing
operation, converting high frequency velocity modes to low fre-
quency. Since the affine field lacks any high frequency modes, the
viscous update results in no net change.

We demonstrate a practical result of this issue with a simple
collapsing viscous beam example, shown in Figure 3. Here, the
affine method is considerably stiffer than the reference solution
using a high-resolution uniform grid, even under spatial refinement.
The two rows of Figure 3 also show that the large errors also persist
whether the physical tile size is set to shrink with the grid scale or
remains unchanged.
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3.4 Polynomial Velocity Fields
The lack of information with which to evolve viscosity in the affine
reduced regionsmotivates our construction of a higher-order polyno-
mial representation of the velocity. In place of the affine description,
Equation 11, we construct the following quadratic model:

u𝑅 (x) = u𝑐𝑜𝑛𝑠𝑡 + G(x − x𝐶𝑂𝑀 ) + 1
2 (x − x𝐶𝑂𝑀 )⊺H(x − x𝐶𝑂𝑀 )

(19)

where H is the velocity Hessian 3-tensor with H𝑖, 𝑗,𝑘 =
𝜕2𝑢𝑖

𝜕𝑥 𝑗 𝜕𝑥𝑘
.

Each page 𝑖 of H is symmetric, thus requiring only 18 degrees of
freedom rather than the full 27. We also enforce incompressibility
by applying the usual ∇ · u𝑅 = 0 constraint, producing a total of 26
degrees of freedom. That is, 3 for the constant term, 8 for the linear
term, and 15 for the quadratic term.
Using this new transformation matrix, C, we can use the same

definitions of the generalized mass matrix, M𝑅 , and transfer matrix,
J, as in the affine case. Applying this to the viscosity system, we
thus retain the JD⊺DJ⊺ term that canceled away for affine fields,
and consequently are able to resolve the missing dynamics within
the interior regions. This extension of the affine model into a qua-
dratic model is similar in spirit to the generalization of APIC into
PolyPIC, which seeks to retain higher-order polynomial modes dur-
ing particle-grid transfer operations [Fu et al. 2017; Jiang et al. 2015].

Applying this quadratic field to the same viscous beam problem,
we get the results shown in Figure 4. Once again, the top subfigure
shows the result for increasing the resolution and interior region size
such that they physically represent the same space, while the middle
subfigure shows the result of increasing just the spatial resolution
without increasing the interior region size. The bottom subfigure
keeps the same resolution but halves the tilesize, effectively making
a similar comparison as Figure 4(a) in terms of spatial scale of the
tiles, but with a constant overall resolution. In all cases, the quadratic
model performs significantly better than the affine model, achieving
much closer results to the reference. Perhaps counterintuitively,
increasing grid resolution while using the same tile count in Figure
4(a) shows slightly improved results, compared to increasing the
number of tiles in Figure 4(b). We attribute this effect to the greater
expressiveness of the padding layer of uniform cells between tiles,
which in (a) must thicken to preserve the tile physical size, but
shrinks alongwith grid cell size in (b).We conclude that convergence
error is strongly influenced by the padding size between interior
regions and that keeping a padding of only two cells limits accuracy.

3.5 Reduced Model for Stokes
We can now combine our new reduced viscosity system with the
reduced pressure system of Goldade et al. [2020] to construct our
full reduced Stokes system. We begin with the variational Stokes
objective function of Larionov et al. [2017]:

𝐽 [u, 𝑝, 𝜏] =
∭

Ω𝐿

𝜌

2Δ𝑡 ∥u − u∗∥2 − 𝑝∇ · u + 𝜏 : 𝜀 (u) − 1
4𝜇 ∥𝜏 ∥

2
𝐹 𝑑𝑉

(20)

where 𝜀 (u) = 1
2 (∇u + (∇u)⊺) is the deformation rate tensor. We

then apply the same separation of Ω𝐶 and Ω𝑅 domains as used
in Section 3.1. That is, we define a uniform Cartesian region, Ω𝐶 ,

and an internal reduced fluid region, Ω𝑅 , that combined span the
entire liquid, Ω𝐶 ∪ Ω𝑅 = Ω𝐿 , with a shared boundary, Ω𝐶 ∩ Ω𝑅 =

𝜕Ω𝑅 ⊆ 𝜕Ω𝐶 . This shared boundary must be sufficiently far from
both boundary conditions, such that 𝑑𝑖𝑠𝑡 (𝜕Ω𝑅, 𝜕Ω𝑅 ∪ 𝜕Ω𝐹 ) > Δ𝑥 .
Due to this immersion, it follows that 𝜕Ω𝐿 = 𝜕Ω𝐶 \ 𝜕Ω𝑅

Applying these two domains,

𝐽 [u𝐶 , u𝑅, 𝑝, 𝜏𝐿] =
∭

Ω𝐶

𝜌

2Δ𝑡 ∥u𝐶 − u∗𝐶 ∥
2 + 𝜌 (u𝐶 − u∗𝐶 ) · (u𝑅 − u∗𝑅)

− 𝑝∇ · u𝐶 + 𝜏 : 𝜀 (u𝐶 ) −
1
4𝜇 ∥𝜏 ∥

2
𝐹 𝑑𝑉 ,

+
∭

Ω𝑅

𝜌

2Δ𝑡 ∥u𝑅 − u∗𝑅 ∥
2 + 𝜌 (u𝐶 − u∗𝐶 ) · (u𝑅 − u∗𝑅)

− 𝑝∇ · u𝑅 + 𝜏 : 𝜀 (u𝑅) + 𝜇∥𝜀 (u𝑅)∥2 𝑑𝑉 .

(21)

Although 𝜏 is defined throughout the liquid, we define actual degrees
of freedom only on Ω𝐶 . For the complementary set, we use the
relation 𝜏 |Ω𝑅\𝜕Ω𝑅

= 2𝜇𝜀 (u𝑅). Likewise, we define 𝑝 solely on Ω𝐶 ,
considering that incompressibility within the reduced fluid region
is enforced by the definition of the reduced model.

Minimizing the above objective function solves the system

𝜌

Δ𝑡
(u𝐶 − u∗𝐶 ) + ∇𝑝 + ∇ · 𝜏 = 0 in Ω𝐶 , (22)

𝜌

Δ𝑡
(u𝑅 − u∗𝑅) + ∇𝑝 + ∇ · 𝜏 + 𝜇∇ · 𝜀 (u𝑅) = 0 in Ω𝑅, (23)

(−𝑝I + 𝜏)n̂ = 0 on 𝜕Ω𝐿, (24)
∇ · u𝐶 + ∇ · u𝑅 = 0 on Ω𝐿, (25)

𝜀 (u𝐶 ) −
1
2𝜇 𝜏 + 𝜀 (u𝑅) = 0 on Ω𝐶 , (26)

noting that u𝐶 , 𝑝 , and 𝜏 are defined only on Ω𝐶 , and u𝑅 is defined
only on Ω𝑅 . Because our new representation is immersed inside the
fluid far from the physical boundary, we do not need any special
treatment of the boundary conditions, and simply reuse the free sur-
face and solid boundary conditions from the fully uniform method
of Larionov et al. [2017].
Discretizing the optimality conditions for our objective, and its

solid boundary condition analog, results in the matrix-vector equa-
tion:

1
Δ𝑡M𝐶 0 G D⊺

0 1
Δ𝑡M𝑅 + 2JD⊺𝝁DJ⊺ JG JD⊺

G⊺ G⊺J⊺ 0 0
D DJ⊺ 0 − 1

2𝝁
−1



u𝐶
v𝑅
p
𝝉

 =


1
Δ𝑡M𝐶u∗
1
Δ𝑡M𝑅v∗𝑅

0
0

 .
(27)

We follow Goldade et al. [2020] in using a full uniform grid over
the whole fluid domain for applying advection and external forces.
Therefore, before solving the Stokes system, we set up the interior
tile structure of reduced regions and for each tile estimate v∗

𝑅
by

a least squares fit to the Cartesian velocities that it is replacing,
according to Equation 14. Transferring back to the Cartesian samples
afterwards simply requires evaluating the quadratic field at each
velocity sample.
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3.6 Alternative Matrix-Vector Forms
This system is amenable to transformation into more convenient
forms via Schur complements. Stress degrees of freedom may be
eliminated to produce the pressure-velocity form:

1
Δ𝑡M𝐶 + V VJ⊺ G

JV 1
Δ𝑡M𝑅 + JVJ⊺ JG

G⊺ G⊺J⊺ 0



u𝐶
v𝑅
p

 =


1
Δ𝑡M𝐶u∗
1
Δ𝑡M𝑅v∗𝑅

0

 (28)

where V = 2D⊺𝝁D is the discrete volume-weighted viscosity opera-
tor.
We opted instead to eliminate the Cartesian velocities and sub-

sequently the generalized velocities to produce the pressure-stress
form [

A11 A12
A21 A22

] [
p
𝝉

]
=

[
G⊺u∗

𝐶
+ Δ𝑡G⊺J⊺B−1M𝑅v∗𝑅

Du∗ + Δ𝑡DJ⊺B−1M𝑅v∗𝑅

]
, (29)

where

A11 = Δ𝑡G⊺M−1
𝐶 G + G⊺J⊺B−1JG (30)

A12 = Δ𝑡G⊺M−1
𝐶 D⊺ + G⊺J⊺B−1JD⊺ (31)

A21 = Δ𝑡DM−1
𝐶 G + DJ⊺B−1JG (32)

A22 = Δ𝑡DM−1
𝐶 D⊺ + DJ⊺B−1JD⊺ + 1

2𝝁
−1 (33)

B =
1
Δ𝑡

M𝑅 + 2JD⊺𝝁DJ⊺ (34)

The pressure-stress formulation is appealing as it is guaranteed
to be symmetric positive-definite (SPD), and consequently allows
for more efficient linear algebra techniques, notably preconditioned
conjugate gradient. This system differs from the SPD system given
by Larionov et al. [2017] only by the second term of each A block.
The B matrix here has a block diagonal structure and mutually
couples all pressure and viscous stress samples around each interior
region’s boundary. Assuming that viscous stencils of one interior
region do not reach into a different interior region, i.e., the distance
between any two regions is at least 2Δ𝑥 , then we can independently
invert each 26 × 26 block, one for each interior region.

The inverses of these blocks are dense, which could become prob-
lematic for performance when distributed out with the surrounding
matrix multiplies. Instead of assembling the entire matrix A before
solving, we can instead store each matrix factor and perform matrix-
vector multiplies from right to left when the action of A is required
[Bridson 2015]. Because of the small size of B, this approach sig-
nificantly reduces the computational cost of multiplying by A. We
found that for a sample matrix-vector multiply with 115395 degrees
of freedom, taken from real simulation data, the naïve multiply takes
16193ms while the factored takes 2637ms, corresponding to a factor
of 6 improvement.
Regarding implementation, our reduced model can be easily

added to an existing variational Stokes solver [Larionov et al. 2017].
The second terms of each Aii block all have J⊺B−1J in place of the
M−1
𝐶

in the first term. This means we can simply apply the same iter-
ation over the fluid domain as variational Stokes, replacing any faces
that fall on the reduced regions with the scalar given by J⊺B−1J.

Fig. 5. A trial question from our two-alternative forced choice study.

4 PERCEPTUAL EVALUATION
Prior work introducing new adaptivity or model-reduction tech-
niques has often left the task of qualitatively assessing the resulting
visual error to the reader, or suggested (perhaps implicitly) that such
error is negligible. Others have relied on numerical or geometric
error measures for evaluation, though these may be only indirectly
related to human perception.
We seek to more directly demonstrate that the performance im-

provements offered by our proposed technique are not accompanied
by significantly deteriorated visual quality.We follow the path paved
by Um et al. [2017], who performed perceptual evaluations on fluid
animation, comparing several existing techniques to reference real-
world videos. Taking a cue from their work, we have conducted
a two-alternative forced choice study that compares our reduced
method to the results from a standard fully refined uniform grid
Stokes-based solver.

Tomore precisely assess the quality difference between ourmethod
and the standard solver, we additionally perform simulations with
the standard solver using perturbed viscosity coefficients, and in-
clude these results in our comparisons. Should any visual differences
compared to the baseline method be significant, this additional data
gives us a measure of how far away our method is from the baseline,
by comparing the perceptual distance of our method to the baseline
with the perceptual distance of the baseline to some known viscosity
perturbation.

4.1 Survey Methodology
We conduct our perceptual study by presenting participants with a
video of a cantilevered viscous beam simulated by a baseline fully
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Table 1. Simulation methods used for our 2-alternative forced choice
study.

Label Method
𝑈𝑛 Fully uniform method with n% viscosity perturbation
𝑈 Baseline fully uniform method
𝑃𝑆 Our reduced method

refined uniform method, along with two options. Each option con-
tains a video of the same scene simulated with either our reduced
method, the baseline method, or one of the viscosity perturbations
of baseline method, as given in Table 1. For each question the two
options are selected randomly with replacement. We ask the viewer
to select which of the two options more closely resembles the refer-
ence video, having presented the three videos (the reference and two
options) simultaneously. Our question format is shown in Figure 5.

Each viewer is asked ten of these questions. Given enough partic-
ipants, this approach provides us with a count of how many viewers
selected each option for every potential pair of methods, including
comparisons of a method against itself. Given the large number of
participants required, we perform this survey on the crowd-sourcing
platform Prolific, filtering for English-speaking participants on desk-
top clients.

To improve the quality of our survey data, we include three prac-
tice questions before our trials to introduce participants to our ques-
tion format. This acts as a comprehension check to ensure viewers
understand the task. After the three sample questions, we enforce a
thirty second washout period before allowing participants to move
on to the trial questions.
In order to mitigate against potential data noise from random

clicking responses, we include an attention check at the middle and
the end, where the reference video is compared against a half-speed
simulation.
Only survey results from users correctly passing both the com-

prehension checks at the start and the awareness tests at the middle
and end were used for analysis. Out of 500 participants, 440 were
considered admissible.

4.2 Survey Results
Our survey provides us with a count of which option users selected
when comparing each pair to the baseline method. We employ
bootstrap resampling to find confidence intervals (CI) on these
measurements. Note that in order to account for potential intra-user
bias, we perform this resampling on a per-user basis. That is, we
treat a single user’s entire response set as a single sample during
bootstrapping, rather than sampling individual question responses.

We also recorded the order of the pairs during data collection—i.e.,
we distinguish a comparison of A against B from that of B against
A. Looking at comparisons of identical pairs (for example,𝑈−20 vs.
𝑈−20), we found a significant left-right framing bias, where the left
option was favoured at a 56.2% probability, with a 95%CI of 50.3%-
63.7%. This kind of framing bias has been previously observed in
the psychophysics literature when comparing similar or identical
information [Robertson and Lunn 2020], or when users are under

(a)

(b)

Fig. 6. Results for our 2AFC study on a cantilevered viscous beam
scene. Column labels were presented on the left and row labels were pre-
sented on the right. (a): Heatmap with the percentage of users that selected
the column method over the row method shown as the box colour, 95%
confidence intervals shown as small circles for each box. (b): A plot indicat-
ing significantly different perceptual distances in red (95% intervals that
are either entirely above 75% or entirely below 25%), and equal perceptual
distances in blue (95% confidence interval crosses 50%). The diagonals be-
ing coloured blue validates the coinflip symmetrization for identical pair
comparisons. Method labels are as described in Table 1
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Fig. 7. A comparison of user responses for the reference method (0.0)
and our reduced method (R) when paired against each of the other
methods. Solid black lines indicate 95% confidence intervals, dashed black
line indicates the 50% threshold, and dotted grey lines indicate the 75%
and 25% thresholds. For instance, the orange bar at 10.0 represents the
probability a user would select our reduced method when presented in a
choice against a 10% viscosity perturbation. The blue bar at 10.0 represents
the probability a user would select the reference method when compared
to the same 10% viscosity perturbation.

time pressure [Roskes et al. 2011]. To counterbalance this framing
bias, we symmetrize the mirrored pairs via coin flipping. Whenever
an A vs. B sample is used as a measurement in the bootstrapping
analysis, a coin is flipped to decide whether it is added to the A vs.
B bin, or the B vs. A bin. Note that this does not affect what answer
the user gave, just which bin of the two symmetric bins it is counted
towards. Using this coinflip symmetrization ensured that CI’s for
identical pair comparisons included 50%, verifying that it works to
counterbalance our measured framing bias.
We summarize this symmetrized data in Figure 6. Figure 6a

presents a heat map of the percentage of users that selected the
column method when compared against the row method along with
this values’ 95% confidence intervals. Figure 6b indicates pairs that
are perceptually distant (red) and pairs that are perceptually close
(blue) according to this data. We consider pairs to be perceptually
distant if the confidence intervals fall either completely above the
75% threshold or completely below the 25% threshold. This means
that when comparing these two against the baseline, users preferen-
tially select one over the other more than 75% of the time, a threshold
we borrow from the psychophysics literature [Eilertsen et al. 2016;
Ulrich and Miller 2004]. We consider pairs to be perceptually close
if their confidence intervals cross the 50% threshold.

To more directly compare our method (PS) to the baseline method
(U), we extract their corresponding column slices from the heatmap
and plot them together in bar form in Figure 7. This chart reveals that
there is no significant perceptual difference between the baseline

Table 2. Scene parameters for presented examples. All examples used a
padding size of 3 cell widths.

Scene 𝜇 𝜌 dx Max DoFs Tilesize
Armadillo 2000 1000 1.5e-3 3.2e6 32
Honey Coil 35 1000 1e-3 1.3e6 16
Jam Jar 400 1000 2e-3 1.7e6 32
Toothpaste 50 1000 5e-3 1e6 16
Viscous Beam 100 1 1/256 6.9e5 16
Octopus 1000 500 3e-3 5.4e5 32

method and our method, given that their 95%CI’s overlap when com-
pared against any of the viscosity perturbations. Looking at the com-
parison against𝑈50, we see that both the baseline and our method
are perceptually distinguishable against such a large viscosity per-
turbation. For comparisons against smaller viscosity perturbations—
anything between𝑈−10 and𝑈10—neither the baseline method nor
our method is perceptually distinguishable.
Taken together, this implies that the error incurred by using

our reduced method is less significant than a 20% change in vis-
cosity. Furthermore, because perturbations smaller than 20% are
indistinguishable from the baseline method, we can conclude that
our method is perceptually competitive with the baseline.

5 REDUCED MODEL RESULTS
Our method was implemented as a plugin that replaces the pressure
and viscosity steps in Houdini’s fluid simulator [SideFX 2022]. All
other aspects of the fluid solver were left unmodified. Scene param-
eters are given in Table 2; the scenes were run on a desktop with a
4-core R5 1400 CPU with 32GB RAM. All reduced simulations were
run with 3-cell padding size.

5.1 Piling Armadillos

Uniform Reduced 16 Reduced 32 Reduced 64

Fig. 8. Piling viscous armadillos at frame 180 using the fully uniform
method, and our method with three different tile sizes: 16, 32, and 64. Ren-
dered with the simulated fluid surface (above), and a cutaway view showing
the reduced tiles (below). Note the erroneous stiffness of the 64 tile size, due
to tiles connecting limbs to the bulk of the body.

We simulate dropping highly viscous armadillos using three differ-
ent tile sizes to demonstrate the influence of tile size on simulation
output and runtime. Renders are shown in Figure 8 alongside a cut-
away view showing the reduced regions. Comparisons for runtime
costs and number of degrees of freedom are shown on Figure 9.
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Fig. 9. Runtime (above) and degree of freedom (below) for the ar-
madillo drop example using the fully uniform method, and our method with
three different tile sizes: 16, 32, and 64. Runtime is split into solve-only cost
(dashed), setup cost (dotted), and total cost (solid).

As expected, larger tile sizes allow for greater degree of freedom
(DoF) reductions, with a corresponding runtime cost reduction. Al-
though smaller tile sizes do require more reduced regions, each
contributing additional DoFs, much of the difference is from extra
uniform cells required in the padding between tiles. We also note
that we notice no effect of tile size on the number of iterations re-
quired for the conjugate gradient solve. The number of DoFs saved
thus directly corresponds to a cost reduction, by reducing the cost
of each matrix-vector multiply.
There is, however, a resolution limit to the size of the tiles, as

shown on Figure 8. Each reduced region is limited in its resolvable
field; tiles large enough to connect a limb to the bulk of the body, as
observed for a tile size of 64, do not have enough freedom to allow
the limbs to move independently, thus exhibiting a locking artifact.

5.2 Dough Octopus
We simulate throwing a doughy octopus at a wall. This scene is
similar to the armadillo example but the octopus undergoes a larger
range of deformations due to being stretched under gravity. Our
method is again able to closely match the result of the fully uniform
solver. 120 frameswere simulated in 198.0minutes by a fully uniform
method, and 139.6 minutes by our reduced method. Average degrees
of freedom were reduced from 528K to 302K.

5.3 Honey Coil
Since we retain the uniform grid on the surface of the liquid, re-
placing only interior domains with reduced polynomial fields, our
method is able to retain the desirable free surface accuracy of the
standard Stokes solver. We demonstrate this claim by replicating
the liquid rope coiling instability, as shown in Figure 1.
We additionally demonstrate that at least a quadratic field is

required by comparing against an affine simulation, as shown in

Frame 210Frame 120

Frame 24Frame 1

Fig. 10. Doughy octopus thrown at a wall at frames 1, 24 (immediately
after impact), 120, and 210. Left octopus is simulated with the fully uniform
solver, and right octopus with our reduced method.

Figure 11. The affine method creates a much more erratic coil, es-
pecially visible at early stages (frames 120 and 240). This failure
to correctly simulate the coiling instability is consistent our ob-
servations in Section 3.3. Recall that affine fields were shown to
lack proper representation of viscous stresses. Thus although the
near-surface cells satisfy the proper free surface condition required
to resolve the instability (given that they are simulated with the
uniform Stokes discretization), there are reduced affine blocks in-
side the fluid that cannot evolve in a sufficiently accurate manner
to capture the correct effect.

5.4 Conveyor Belt Toothpaste
Figure 12 shows a similar liquid coiling test placed on a moving
conveyor belt. Like that of Larionov et al. [2017], our method is
able to capture some of the various "sewing patterns" that arise as
the belt speed changes [Bergou et al. 2010]. This demonstrates that
our method respects the moving solid boundary conditions of the
standard Stokes solver without any change in its treatment. Because
reduced regions are placed sufficiently far in the interior of the fluid,
any variational (volume fraction) weights involved in resolving the
moving solid boundary condition only interact with the uniform
grid domain.

5.5 Jam Jar
We drop a pre-fractured glass jar filled with jam. The glass shards
were simulated using Houdini’s built-in rigid body solver, and were
allowed to interact with the fluid via Houdini’s soft coupling mech-
anism. We see that our method naturally handles these mutual
interactions.

5.6 Viscous Beam Timing
We also performed a timing test on the cantilevered viscous beam
scene (𝜌 = 1, 𝜇 = 100). A fully uniform treatment of the scene
contains 695K DoFs; our method nearly halves that to 354K DoFs.
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Fig. 11. Frame sequence of a liquid rope-coiling instability simulated using an affine reduced model (top) and a quadratic reduced model (bottom). The
affine model deviates from the expected coiling achieved by the quadratic model, especially in the first two image pairs.

Fig. 12. Snapshot of a liquid rope coil on a conveyor belt.

Fig. 13. Jam jar drop on frame 250, simulated using our reduced method.

This halving in degrees of freedom was associated with a similar
decrease in runtime of the Stokes solve, reducing an average frame-
time of 1084s for the fully uniform method to 607s for our method.

This runtime reduction is largely from savings in the linear solve
step, where the reduced number of DoFs decreases the size of each
matrix-vector multiply in the conjugate gradient (CG) iteration.
Our method does, however, require extra cost in setting up the

reduced system, with the average setup time (all steps in the Stokes
solve excluding the CG solve) increasing from 58s for the standard
method to 204s in our method. Our method is therefore primarily
useful for simulations where the setup cost is negligible relative
to the solve cost, which is typical for high resolution simulations;
or for geometries where the DoFs can be greatly reduced, such as
those with large bulk fluids (i.e., lower surface-to-volume ratio).

6 DISCUSSION AND CONCLUSIONS
We have presented the first acceleration method for unified Stokes
simulation, leveraging incompressible polynomial velocity fields on
coarse interior tiles. Our two-alternative forced choice study has
demonstrated that errors associated with our reduction method do
not deteriorate visual quality in a perceptually significant manner.
We have additionally shown that our quadraticmodel overcomes lim-
itations of a simpler affine model, and that the reduction in degrees
of freedom resulting from our method yields reduced computational
costs compared to the uniform discretization.
We envision several avenues for further performance increases

that were not yet explored in this work. We used a single global
tile size to dictate the maximum dimensions of our reduced regions
[Goldade et al. 2020]. Given that these reduced regions constitute
a kind of spatial adaptivity approach, it is possible to introduce
tile-level adaptivity. That is, allow the maximum size of the interior
reduced tiles to vary spatially. One could imagine either a simple
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approach of using larger tiles deeper in the fluid, or a more "physics-
aware" approach of using the least squares residual of the polynomial
velocity fit to direct which tiles should be coarsened or refined.

In our test cases, we showed that Hessian information is required
to accurately treat viscous forces in the interior reduced domains,
requiring us to use a quadratic velocity field. In cases where viscous
forces may not be significant—in very still flows for example—an
affine field may be sufficient, and preferable given its fewer degrees
of freedom. Ideas of 𝑝-adaptivity may thus be applied [Edwards and
Bridson 2014], where tiles are free to add or subtract degrees of
freedom when deemed necessary.
Finally, we see a fruitful future for the use of perceptual studies

as a tool for evaluating (or even developing) new simulation tech-
niques. Much emphasis has traditionally been previously placed on
numerical measures of error, and while such metrics are useful for
assessing mathematical accuracy, in many graphics applications the
viewer is our final adjudicator. As such, more value should be placed
on measuring errors in this perceptual space. For example, a con-
crete experiment would be to test how high the residual tolerance
for conjugate gradient can be before becoming visually distinguish-
able. While heuristics have suggested a standard of 10−4, it may be
possible to get away with a much larger tolerance. Along the same
lines, Harrison et al. [2004] showed that, in some cases, animated
character’s limb lengths can change by as much as 20% before view-
ers will notice; exploiting perceptual factors might allow similarly
extreme liquid volume changes to be rendered invisible.
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