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Fig. 1. A balloon being inflated then released to be propelled via the energy transfer between elastic potential energy to air pressure to kinetic
energy. Insets show pressure value at each Voronoi cell inside and around the balloon.

We present a novel discretization of coupled compressible fluid and thin de-
formable structures that provides sufficient and necessary leakproofness by
preserving the path connectedness of the fluid domain. Our method employs
a constrained Voronoi-based spatial partitioning combined with Godunov-
style finite-volume time integration. The fluid domain is discretized into
cells that conform exactly to the fluid-solid interface, allowing boundary
conditions to be sharply resolved exactly at the interface. This enables direct
force exchange between the fluid and solid while ensuring that no fluid leaks
through the solid, even when arbitrarily thin. We validate our approach on
a series of challenging scenarios—including a balloon propelled by internal
compressed air, a champagne cork ejecting after overcoming friction, and a
supersonic asteroid—demonstrating bidirectional energy transfer between
fluid and solid.

Additional Key Words and Phrases: Fluids, Liquids, Deformable Structures,
Thin Shells, Voronoi, Compressible Euler Equations, Godunov, Finite Volume
Method

1 Introduction
The interaction of compressible fluids with solids give rise to a
range of varied and visually interesting phenomena. From a bal-
loon whizzing through the air propelled by its own elasticity, to
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car suspension absorbing road shocks, or a stomp rocket launch-
ing skyward, the coupling of compressible fluids and solids holds
great potential for compelling simulations hitherto overlooked in
computer graphics. Beyond entertainment, these simulations have
applications in areas such as modeling engine combustion chambers
and capturing pressure gradients in biological systems like blood
vessels.

While the general behaviour of fluids is governed by the Navier-
Stokes equations, we focus our efforts specifically on the simulation
of compressible inviscid fluids, which are given by the compress-
ible Euler equations. Compared to incompressible fluids commonly
simulated in computer graphics where pressure is often taken to be
the Lagrange multiplier for the incompressibility constraint, com-
pressible fluid treat pressure as an extra state variable in a trio of
conservation laws for mass, momentum, and energy.

In the process of attempting to resolve the coupling of compress-
ible fluids to solids, prior work would destroy the topology of the
boundary between the two phases. They either insufficiently sample
the boundary due to the difference in discretization between the
solid and fluid phases, leading to leaking across thin boundaries, or
sample these boundaries volumetrically thus adding thickness and
potentially sealing flowable paths. We point out that in scenarios
with highly dynamic solid structures, this is problematic as it could
lead to considerably different and incorrect behaviour. Consider a
self-propelled balloon for example, a leaky balloon might lose all its
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air before propelling itself, while an overly conservatively leakproof
balloon may end up sealing its nozzle.

This motivates the need for a method that enforces necessary and
sufficient leakproofness, preserving the path connectivity of the fluid
domain. Fluid should be able to flow anywhere a continuous path
exists through fluid, but never through solid. Our key insight here
is that to preserve all potential flowable paths, thus allowing flow if
and only if this connectivity exists, the solid and fluid discretizations
must agree on where the solid is. That is, the solid geometry exactly
must be a part of the fluid discretization.
We propose a novel fluid discretization that expands on prior

Voronoi-based finite volume fluid discretizations [Springel 2010] by
introducing the solid geometry as faces in the fluid discretization.
Our new volume stitching algorithm ensures that the fluid mesh
conforms precisely to solid boundaries, while preserving the fluid
domain’s topology. The result is an interface that is sufficiently and
necessarily leakproof, ensuring that the discretized fluid domain
respects the intended topology. Furthermore, the interface is sharply
resolved at the solid boundary, enabling accurate force exchange
between solid and fluid.

This partition can then be used for the explicit integration of the
system, with fluid-fluid interactions being handled by the shared
pairwise faces between any two particles, and the solid-fluid interac-
tions are handled by any particles adjacent to the solid boundaries.
Information is accurately passed between the two phases, from solid
to fluid via a Dirichlet boundary condition on velocity, and from
fluid to solid via a pressure force.
We demonstrate the versatility of our method across a range of

challenging scenarios—including a balloon propelled by escaping
air, a champagne cork ejecting under pressure, and a supersonic
asteroid generating Mach cones—examples involving strong bidirec-
tional coupling and complex topology. These examples showcase the
method’s ability to robustly handle thin structures, preserve fluid
connectivity, and capture rich, visually compelling dynamics that
were previously difficult to simulate within a unified framework.

2 Related Work

2.1 Compressible Fluids
2.1.1 Lagrangian Methods. Much of the work in the simulation of
compressible flow stem from the astrophysics community, which
pioneered a Lagrangian description via Smoothed Particle Hydro-
dynamics (SPH) [Gingold and Monaghan 1977; Lucy 1977]. This
involved a set of particles that track the fluid as it flows, with a
kernel used for interpolation of physical quantities and their gradi-
ents onto the whole domain, allowing for low advection errors and
automatic resolution adaptivity.

2.1.2 Eulerian Methods. In contrast, Eulerian methods partition
space into static cells, with advection being handled via some inter-
polation scheme [Stone and Norman 1992]. In these methods, the
system is often solved via finite-volume Godunov schemes, with nu-
merical fluxes being computed at each interface between cells. Cells
may be structured or unstructured, with the choice of domain being
problem dependent. While fully gaseous applications, such as those
intended by Stone and Norman [1992], typically focus on structured
grids, applications that require accurate boundary handling, such

(a) Springel 2010 (b) Ours

wind wind

Fig. 2. Simulation of an infinitessimally thin sheet immersed in an
inviscid fluid moving rightwards. Volumetric methods such as that
of Springel [2010] produce nonphysical pressure variation at the
leading and trailing edges of the sheet. Solid cells are shown in grey,
and the solid surface is shown as a black line.

(a) Springel 2010 (b) Ours

Fig. 3. Cutaway view of an hourglass-shaped narrow opening ini-
tialized with a Sod shock tube, with the high-pressure region on the
left and low-pressure region on the right. Approaches using solid
particles, such as that by Springel [2010], add additional thickness
that closes the narrow opening, while our method resolves the solid
at the specified surface. Solid cells are shown in grey, the boundary
is shown as a black outline.

as those in engineering, demand the use of unstructured meshes.
Mavriplis and Venkatakrishnan [1997] presented a method for un-
structured meshes consisting of both triangular and quadrilateral
faces that conforms to input geometry (in their intended applica-
tion, plane wings). Our discretization similarly respects input solid
geometry, but in a Lagrangian setting where source points can be
in arbitrary locations in the fluid domain. To achieve similar resolu-
tion adaptivity to Lagrangian methods, Berger and Colella [1989]
introduced adaptive mesh refinement (AMR) for locally reducing
grid size.

2.1.3 Moving Unstructured Meshes. Methods involving moving un-
structured meshes attempt to achieve the advantages of both sides,
with the high-accuracy flux and gradient computation of Eulerian
schemes and accurate advection of Lagrangian. The domain is dis-
cretized using non-regular cells that move and deform according to
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the fluid motion. This grid motion is not necessarily required to fol-
low the fluid velocity, allowing for an arbitrary Lagrangian-Eulerian
(ALE) approach [Hirt et al. 1974], often used to avoid deteriorating
mesh quality such as the presence of shards.

Börgers and Peskin [2005] introduced a Voronoi-based discretiza-
tion, using it for incompressible flow, which was later adopted by
Serrano et al. [2005] and Springel [2010] for compressible prob-
lems. The latter presented a volumetric approach to one-way solid
coupling by explicitly including solid Voronoi points, but such volu-
metric approaches fail to properly resolve thin solids, as shown on
Figure 2, as well as potentially sealing small openings, shown on
Figure 3. Our work adopts their fluid discretization in the bulk flow,
and presents a method for handling bidirectional solid coupling by
modifying the Voronoi partition in the regions around the solid
boundaries.
In contrast with the Voronoi representation of fluids, Voronoi

partitions have also been used to represent solids in cell lattice
methods, with Hwang et al. [2021] presenting a coupling scheme
with weakly-compressible SPH fluids. We once again emphasize the
limitations of such a volumetric representation of solids.

2.1.4 Moving Meshless Methods. With similar objectives, moving
meshless methods have been developed, where source points parti-
tion space, but via fields of overlapping weights rather than strict
mesh allocations [Lanson and Vila 2008]. These differ from SPH in
that they define a partition of unity over all space and still apply
Godunov-like interface fluxes [Hopkins 2015].

2.1.5 Riemann Solvers. As part of Godunov-type finite volume
schemes, at each interface, the computation of a stable numeri-
cal flux is required. The first, and most diffusive, approximation is
due to Lax [1954], which is equivalent to taking an average over
an entire cell’s domain. Kurganov and Tadmor [2000] reduces this
domain of dependence to within the maximum signal velocity of
waves propagating from the interface, reducing diffusivity. Vari-
ous other approximate solver have been proposed, such as the Roe
linearization [Roe 1981], HLLE [Einfeldt 1988; Harten et al. 1983],
HLLC [Toro et al. 1994], as well as exact solvers relying on Newton
iteration [Toro 2013], but we note that our method is agnostic to
the choice of Riemann solver.

2.1.6 In Computer Graphics. Much of the effort in fluid simulation
in computer graphics has largely been focused on incompressible
flow. SPH in particular, although having its roots in the highly
compressible regime, has been adapted by the community for in-
compressible flow, via the application of different particle potentials
[Desbrun 1996] or via a pressure solve [Bender and Koschier 2016].
Some efforts have been done to soften the divergence constraint
and allowing for controlled deviations from a defined rest density
[Becker and Teschner 2007; He et al. 2025], but this work is limited to
the weakly compressible regime. The closest in this field to our work
is that of Cao et al. [2022], which simulate true compressible fluids in
the context of supporting fluid shock-induced solid fracturing. Due
to their choice of an MPM discretization, their solids are inherently
volumetric and as such are limited by the resolution of the MPM
grid. Our method, in comparison, conforms the fluid discretization
around the solid, and are able to resolve even codimensional solids.

(a) Grétarsson 2013 (b) Ours

Fig. 4. 2D Sod shock tube through a narrow opening, with the bound-
ary shown in black. The mass lumping of Grétarsson and Fedkiw
[2013] around the tube is shown in dotted yellow, discarding cells
not adjacent to cell centers (yellow circles).

We achieve this surface-respecting discretization via a modifica-
tion of the Voronoi diagram induced by the Lagrangian fluid par-
ticles. The Voronoi diagram has been prior leveraged in computer
graphics for representing fluid domains, albeit not compressible
ones. Incompressible flow was simulated by Sin et al. [2009], com-
puting the divergence free condition locally on each Voronoi cell.
Brochu et al. [2010] added an explicit surface tracker that allows
for computing more accurate surface forces such as surface tension.
Saye and Sethian [2011] similarly leveraged it for surface tracking
for multiphase flows, aiding in simplifying topology changes. Unlike
these works, we consider every interface between each fluid parti-
cle, with physics being computed directly on the Voronoi diagram,
rather than on a background Eulerian mesh. Voronoi diagrams have
also been used to simulate foam bubbles, where each bubble is a
radius-restricted Voronoi cell, with inter-bubble interfaces being
represented by faces of the Voronoi diagram [Busaryev et al. 2012;
Qu et al. 2023].

2.2 Solid-Fluid Coupling
The domain of fluid-structure interaction (FSI) in mechanics litera-
ture is rich in methods for coupling fluid simulation to solids. Most
notable among these are arbitrary Lagrangian-Eulerian (ALE) in-
terfaces [Donea et al. 1982], the ghost fluid method [Fedkiw et al.
1999], and the immersed boundary (IB) method [Peskin 1972].

2.2.1 Arbitrary Lagrangian-Eulerian. methods discretize the fluid
domain via a deformable mesh that attempts to match the mesh
representation of the solid while retaining a fully static Euler rep-
resentation far away from the solid [Donea et al. 1982]. The key
difficulty in these methods is computing a valid deformation of the
mesh without degrading mesh quality, thus limiting the method to
small solid deflections of volumetric solids. Recent advancements
have been introduced to support incompressible fluidswith codimen-
sional solids with larger deformations via auxiliary coarse meshes,
but deformations are still constrained and the method is limited to
2D and simpler geometries [Fernandes et al. 2019]. These methods
are thus not suitable to the significant deformations we present in
our examples.
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2.2.2 Ghost FluidMethod. Fedkiw et al. [1999] introduced the ghost
fluid method to provide sharp interface handling for Eulerian mul-
tiphase fluid simulations. Ghost values were introduced into the
numerical stencil, modifying accessed data to enforce boundary con-
ditions across interfaces, usually tracked via level sets. The method
was later extended from multiphase fluids into interfaces with La-
grangian solids [Fedkiw 2002]. This work also became the preferred
method for solid boundary handling in computer graphics literature
[Bridson 2015].

A similar method was adopted for boundary handling in SPH by
filling solid domains with fictitious particles to avoid kernel deficien-
cies [Randles and Libersky 1996; Takeda et al. 1994], which was also
later adopted by the graphics community [Schechter and Bridson
2012]. While this method is similar in spirit to the original ghost
fluid, it loses sharp interface tracking due to the inherent smooth-
ness introduced by SPH, as well as being necessarily volumetric.
More recent work has introduced its use in arbitrary polyhe-

dral finite volume discretizations [Vukčević et al. 2017]. The key
difficulty in these discretizations, shared from the original ghost
fluid method, is the mismatch between the solid boundary and the
fluid parcel boundary. We point out that the boundary condition
becomes considerably simpler in our case because we match the
fluid boundary to the solid boundary. We can simply reflect fluid
particles across the face normal to enforce zero flux penetration
across the solid faces.

2.2.3 Immersed BoundaryMethod. embeds Lagrangian solid bound-
aries within a background Eulerian fluid grid, transferring forces and
velocities by smoothing out the Lagrangian representation via delta
functions [Peskin 1972, 2002]. Although initially developed for sim-
ulation of codimensional heart valves [Peskin 1972], no guarantees
were made in terms of leakproofness. In particular, because only the
solid is treated as Lagrangian points, with the fluid being discretized
on a static grid, the solid often passes by fluid control points. In an
incompressible fluid, as was the original implementation, this is not
an issue as pressure and density remain constants throughout, but
this offers fluid sidedness tracking challenges in compressible flows.
Additionally, the original formulation which blurs solid velocity
across a finite thickness does not enforce exact velocity matching
with the fluid, and can thus violate no-flux conditions.

Extensions were developed to allow for sharp enforcement of
boundary conditions, both in incompressible [Mittal et al. 2008]
and compressible [Ghias et al. 2007] flow. These largely involve
cut-cell and ghost cell approaches, effectively slicing the Eulerian
grid to restrict it to one side of the domain. We highlight the cut-cell
methodology presented by Ye et al. [1999] (once again for incom-
pressible flow), involving extending boundary grid cells to include
empty cells missing their grid points cut off by solid boundaries.
These effectively modify the grid, warping the square grid into trape-
zoids wherever they are cut off by the solid boundary. Grétarsson
and Fedkiw [2013] used a similar approach for compressible flow,
and are able to handle thin solids, but recognized that their method
may discard volumes that cannot be attached to adjoining grid cells,
as shown on Figure 4. Our stitching algorithm is conceptually sim-
ilar to these approaches, reattaching orphaned fluid parcels to an
existing fluid source point, and can be considered as a generalization

of their method into unstructured meshes. We demonstrate that our
approach overcomes their limitations, and are able to resolve even
subgrid fluid paths.

2.3 Modified Voronoi Diagrams
Visibility-constrained Voronoi diagrams have been extensively stud-
ied in computational geometry as generalizations of classical Voronoi
tessellations to environments with occlusion or directional visibility
restrictions. For instance, Aurenhammer et al. [2014] analyze dia-
grams where each site is restricted to a visibility wedge, resulting
in Voronoi cells that may be non-convex, disconnected, and of qua-
dratic combinatorial complexity. A broader treatment is provided
in the monograph by Okabe et al. [2000], which surveys visibility-
aware and obstacle-constrained variants in applications ranging
from robotics to spatial statistics.

However, these constructions typically resolve endpoints of obsta-
cles as Voronoi source points. In contrast, our setting involves codi-
mensional solid boundaries that lack any Voronoi sources on their
surface. As a result, traditional visibility-constrained approaches
cannot be directly applied. Using such methods adds thickness on
solid vertices, potentially destroying the topology of the fluid do-
main. Instead, we modify the Voronoi diagram induced solely by
fluid particles by explicitly clipping it to the solid geometry and then
reassigning orphaned cells via a path-connectivity-preserving stitch-
ing algorithm. This constructively embeds solid interfaces into the
fluid partition, enabling sharp boundary resolution and leakproof
coupling—features not addressed by existing visibility-constrained
methods.
Tsin and Wang [1996] does present a method for a Voronoi di-

agram where barriers only constrain visibility and do not induce
their own sites, but their work is limited to rectilinear barriers in
2D. The generalization to arbitrary barriers, as well as a further
generalization to 3D, is nontrivial.

3 Equations of Motion
We aim to solve the fluid flow as described by the compressible Euler
equations, which are a hyperbolic conservation law

𝜕

𝜕𝑡
U(x, 𝑡) + ∇ · F(x, 𝑡) = 0 , (1)

where U represents the vector of conserved quantities

U =
[
𝜌 𝜌𝑢𝑥 𝜌𝑢𝑦 𝜌𝑢𝑧 𝜌𝑒𝑇

]⊺
, (2)

consisting ofmass density 𝜌 , momentumdensity
[
𝜌𝑢𝑥 𝜌𝑢𝑦 𝜌𝑦𝑧

]⊺ ,
and total energy density 𝜌𝑒𝑇 , and F is a nonlinear convective flux

F =



𝜌𝑢𝑛
𝜌𝑢𝑥𝑢𝑛 + 𝑃𝑛𝑥
𝜌𝑢𝑦𝑢𝑛 + 𝑃𝑛𝑦
𝜌𝑢𝑧𝑢𝑛 + 𝑃𝑛𝑧

𝜌𝑢𝑛

(
𝑒𝑇 + 𝑃

𝜌

)


(3)

governing the flow of these conserved variables across some unit
normal vector n =

[
𝑛𝑥 𝑛𝑦 𝑛𝑧

]⊺ arising from the velocity u =[
𝑢𝑥 𝑢𝑦 𝑢𝑧

]⊺ and normal velocity 𝑢𝑛 = u · n. The specific total
energy 𝑒𝑇 = 𝑒 + 1

2 | |u| |
2 is the sum of internal energy 𝑒 and kinetic

energy 1
2 | |u| |

2.
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(a) Initial Voronoi diagram (coloured
outlines), clipped by solid constraints
(black outlines, black shaded).

(b) Cells containing a source point
are assigned (filled), while the rest are
registered as “orphaned” (white). Or-
phan cells will inherit the valid neigh-
bours with the largest face area (grey
arrow).

(c) New connectivity reveals more or-
phaned cells that can be inherited.

(d) Final modified Voronoi diagram.

Fig. 5. Stitching orphaned cells back to valid cells from the clipped
Voronoi based on path-connectivity constraints.

Observe the explicit presence of pressure 𝑃 , rather than the usual
Lagrange multiplier treatment used in incompressible simulation.

This system is underdetermined and requires an equation of state
to complete it. We use the ideal gas law 𝑃 = (𝛾 − 1)𝜌𝑒 , but note
that the method presented is agnostic of the chosen state equation.
We take the adiabatic index 𝛾 to be 1.4, representing ideal diatomic
gases.
Via Green’s theorem, we can rewrite the conservation law as

𝜕

𝜕𝑡

∫
Ω
U(x, 𝑡) 𝑑𝑉 +

∫
𝜕Ω

F(x, 𝑡) · n 𝑑𝑠 = 0, (4)

which holds for any choice of fluid parcel Ω in space. This weak form
guides our choice of discretization and naturally motivates the use
of finite volume partitions, where numerical fluxes are computed at
cell interfaces to enforce conservation locally.

4 Topology-Preserving Discretization

jAiji
ui

ui

uiVi
Vj

We seek a discretization that resolves
boundary conditions imposed by ar-
bitrarily shaped solids, including thin
shells and other codimensional inter-
faces. This rules out fixed-resolution
methods and volumetric solid repre-
sentations, which require excessive
refinement to capture thin structures. We also require support
for large solid deformations—such as those of a deflating bal-
loon—without compromising the fluid discretization, excluding
static meshes and deformable mesh methods with fixed connec-
tivity (e.g., ALE), which are typically limited to low-deformation
volumetric solids.

These constraints naturally point to Lagrangian fluid representa-
tions. Among these, we prioritize compatibility with finite volume
methods to sharply resolve solid interfaces. We adopt the Voronoi-
based discretizations of Börgers and Peskin [2005] and Springel
[2010], in which Lagrangian particles track the fluid motion and
induce a spatial partition, assigning each particle the region closest
to it in space.

Applying this discretization to the weak form in Equation 4 gives
the fluid state update for some particle 𝑖 with nearest-neighbour
particles 𝑗 ,

𝜕

𝜕𝑡
U𝑖 +

∑︁
𝑗

𝐴𝑖 𝑗

𝑉𝑖
F̂𝑖 𝑗 · n𝑖 𝑗 = 0, (5)

where U𝑖 is the fluid state of particle 𝑖 , F̂𝑖 𝑗 is a numerical flux com-
puted between 𝑖 and 𝑗 , 𝐴𝑖 𝑗 is the area of their interface, 𝑛𝑖 𝑗 is the
outwards pointing normal of said interface, and 𝑉𝑖 is the volume
associated with 𝑖 . The geometry of this interface between particles
𝑖 and 𝑗 is shown in the inset above.

This finite-volume equation where a numerical flux is evaluated
at each interface is known as the Godunov form.

4.1 Challenges to Leakproofing
Significant care needs to be taken near boundaries, given that in our
Godunov-type discretization (Equation 5), forces are applied only
along faces of the Voronoi partition. In order to properly couple any
boundary condition with the fluid particles, we must modify the
Voronoi diagram to include the boundaries as edges in the diagram.
Additionally, given a particle on one side of the barrier, its given
domain should not extend past a barrier unless there is a contiguous
path through the fluid to that side. In otherwords, a particle’s domain
must represent a single contiguous fluid.

Springel [2010] applied the solid boundaries as explicit particles
that induce their own Voronoi cells. This has the disadvantage of
being a volumetric representation of the solid, and thus cannot
accurately capture arbitrarily thin structures.
Figure 2 demonstrates that the “thickening” approach is poorly

suited to for immersed thin structures. We simulate a flat sheet
immersed in a tangentially flowing fluid. Because the inviscid fluid
flow is always parallel to the thin solid surface, the solid should not
induce any change in the fluid state. Unfortunately, the volumetric
approach requires a finite thickness inducing a pressure build-up
on the leading edge of the sheet and a low-pressure wake on the
trailing edge.

Furthermore, as depicted in Figure 3, the “thickening” approach is
poorly sited for flow through small orifices, as it is prone to numeri-
cal sealing of small holes, such as those found in funnels, medicine
droppers, jet sprays, or balloon nozzles. Our method resolves ori-
fices, no matter how small, without introducing additional particles
to represent the solid surface.
A similar issue arises from the work of Grétarsson and Fedkiw

[2013] for a different reason. Their discretization utilizes a static
grid, and performs mass lumping to reallocate partial cells to neigh-
bouring grid degrees of freedom. This has the issue of potentially
discarding partial cells, as shown on Figure 4.
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Algorithm 1 Clipped Voronoi Stitching
1: Compute initial Voronoi tessellation
2: Clip Voronoi cells by solid boundaries
3: for each cell do
4: if cell does not contain its generating point then
5: Label cell as orphaned
6: end if
7: end for
8: while any cell is orphaned do
9: for each orphaned cell do
10: for each neighboring non-orphaned cell do
11: Compute interface area between cells
12: end for
13: Merge orphaned cell with neighboring non-orphaned

cell with largest interface area
14: Update orphaned cell label
15: end for
16: end while

Therefore, we seek a discretization that exactly recovers the con-
nectivity produced by the solid boundaries, is leakproof where and
only where required, and allows for fluid flow wherever a valid path
exists.

4.2 Clipped Voronoi Stitching Algorithm
We develop a stitching algorithm that augments the set of interfaces
from the Voronoi diagram with the faces of the solid boundary,
reassigning patches of space to the appropriate fluid particle in a
path-connected manner, so that fluid may continue to flowwherever
a valid path exists around the solid.
Our method is initialized by constructing the standard Voronoi

diagram induced by the fluid particles over all of space. We then
include all solid faces into this structure by clipping all the cells
with these faces. Any Voronoi faces inside volumetric solids will
be removed, while codimensional solid faces will be added as new
faces in the diagram. Each fluid face is then tagged with the label
of the bordering fluid cells, constructing a neighbourhood graph
where each edge is a valid fluid-only path through space.

Around these solid faces, a number of cells will become “or-
phaned”, i.e. they will no longer contain a source point within the
cell. We tag these cells, then for each orphaned cell, we will assign
it to its non-orphaned neighbour with the largest interface area, as
shown on Figure 5. We choose to attach by largest interface area due
to our choice of finite-volume as the integrationmethod. Since fluxes
are computed pairwise at each interface weighted by interface area,
orphaned cells ought to be most influenced by whichever neighbour
it shares the largest face with. This procedure is done iteratively,
as some orphaned cells may be landlocked by other orphaned cells
until said cells are assigned.

The completed algorithm is presented onAlgorithm 1. Our orphan-
cell reassignment is conceptually similar to breadth-first region
growing or flood fill, but adapted to prioritize interface area and
operate on clipped Voronoi cells, preserving finite-volume structure
and fluid path connectivity under solid constraints.

(a) Voronoi mesh (b) Flux domains of dependence at
each interface

Fig. 6. A Voronoi diagram at some timestep (left), and the domains
of dependence of the waves propagating at each interface (right).
Voronoi mesh is represented in green, with source points shown in
red. Domains of dependence are shown in light blue.

4.3 Necessary and Sufficient Leakproofing
It is straightforward to show that our method preserves the connec-
tivity of the fluid domain as constrained by the input solid bound-
aries.
First, solid boundaries are included as extra faces on top of the

original Voronoi diagram. Second, a fluid face is never deleted unless
it is fully inside a volumetric solid.
Third, a fluid face split by a solid still persists and therefore still

produces fluxes. Such a face either belongs to a valid or an orphaned
cell. In the former case, it allocates its flux to its original valid cell.
In the latter case, we know that the orphaned cell will be connected
to a valid cell through a series of shared fluid faces. Therefore, any
flux this face experiences represents some fluid that is able to make
its way to the valid cell’s particle via a path entirely within the fluid.
As such, the face may allocate its flux to that valid cell, representing
a physically viable flow.
Conversely, the presence of any solid face inhibits fluid flow by

disconnecting the connectivity of either side of the face.
Thus, our partition explicitly preserves the connectivity of the

fluid domain induced by the solid boundaries.
Because our partition preserves this connectivity, we produce a

method that is sufficiently leakproof, but also leakproof only when
necessary, allowing for fluid flux where the original solid boundary
conditions allow for.

4.4 Numerical Flux
As noted in Equation 5, we require the evaluation of some numer-
ical flux F̂𝑖, 𝑗 at each pairwise interface between neighbours 𝑖 and
𝑗 . Numerous methods exist to solve this, including an analytic so-
lution via characteristic decomposition [Toro et al. 1994], and vari-
ous linearization-based approximations [Einfeldt 1988; Harten et al.
1983; Roe 1981]. Our method is agnostic of this choice, and generally
more accurate solvers exchange reduced diffusivity with increased
computational cost.
In our implementation, we choose to take the numerical flux

described in Kurganov and Tadmor [2000], which has been prior
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Reflected
Particles

Source
Particles

Fig. 7. Boundary condition enforcement via reflected particles. Re-
flected particles are depicted as outlined circles in the global state
above, but only exist in the context of their corresponding particles
in order to resolve the solid boundary condition (right). Note that
locally, the solid interface is resolved exactly the same way as fluid
interfaces, with a flux computed along the face.

shown to be sufficiently diffusive to reduce noise that would lead to
multivalued fields. They use:

F̂𝑖 𝑗 =
1
2

(
F−𝑖 𝑗 + F+𝑖 𝑗

)
−
𝑎𝑖 𝑗

2

(
U+
𝑖 𝑗 − U−

𝑖 𝑗

)
. (6)

To define the signal velocity 𝑎𝑖 𝑗 , consider a path C
(
U−
𝑖 𝑗
,U+

𝑖 𝑗

)
, con-

necting the left and right states of a Riemann fan. The signal velocity
is the spectral radius of the flux Jacobian 𝜕F/𝜕U evaluated along
this curve. In other words, it is the largest magnitude eigenvalue
along the path:

𝑎𝑖 𝑗 = max
U∈C

(
U−
𝑖 𝑗
,U+

𝑖 𝑗

) 𝜆(U). (7)

For the compressible Euler equations, the eigenvalues of the flux
Jacobian are 𝜆(U) = {𝑢𝑛, 𝑢𝑛 + 𝑐,𝑢𝑛 − 𝑐}. For a 1D Riemann problem,
this is simply evaluates to the maximum eigenvalue at either side
of the interface, max

{
|𝑢−𝑛 ± 𝑐− |, |𝑢+𝑛 ± 𝑐+ |

}
, with 𝑐 =

√︁
𝛾𝑃/𝜌 being

the sound speed of the fluid.
Conceptually, these numerical fluxes form waves traveling out

from each interface, moving at the speed 𝑎𝑖 𝑗 , as sketched out on Fig-
ure 6. Notice then that𝑎𝑖 𝑗 exactly determines the timestep restriction–
waves cannot be allowed to travel past the middle of the cell. Outside
this wave propagation domains, the solution remains the same from
the previous timestep.

4.5 Boundary Enforcement
Because our discretization includes the solid boundaries as faces in
the fluid partition, we greatly simplify the approach to respecting
solid boundaries. We simply must enforce zero flux across the inter-
face in the frame of the solid face’s velocity, thus dictating that the
fluid must match the solid face velocity at the interface.
To do so, for every solid face in a particle’s fluid cell boundary,

we create a reflected particle across this solid face, as shown on
Figure 7. These reflected particles are entirely local, and exist only

(a) Leaky (b) Leakproof (Ours)

wind wind

Fig. 8. Cutaway view of a bunny inside a windtunnel without (a)
and with (b) our Voronoi stitching method. The fluid inside the
watertight bunny remains quiescent using our method, but gains
velocity via leaking through the interface using a naive approach.

from the point of view of the particle being reflected. They do not
exist in the actual simulation domain, and do not participate in
any other particle’s flux computation. This differs from approaches
with explicit solid Voronoi cells ([Hwang et al. 2021; Springel 2010]),
which necessarily introduces a volume to the solid because of its
inclusion in the Voronoi. We additionally note that this also allows
us to resolve even subgrid boundaries immersed entirely within
a cell, as those faces are still added to the mesh and enforce this
fluid-solid boundary flux.

These reflected particles share the original particle’s density and
pressure, and will have a velocity mirrored in the face normal direc-
tion in the solid velocity’s frame. Taking together the boost to solid
velocity frame, performing the reflection, and deboosting to the lab
frame, we have,

u𝑓 = u𝑓 − 2((u𝑝 − u𝑠 ) · n)n, (8)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Height

Av

Ground Truth
Leaky
Leakproof (Ours)

Fig. 9. Average speed over time inside a watertight bunny inside a
windtunnel. Our leakproof partitioning keeps the interior quiescent
for the duration of the simulation, matching the ground truth, while
the naive approach gains 50% of the exterior velocity.
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0 2 4 6 8 10

Time

ρ = 5 μ = 2

ρ = 5 μ = 1

ρ = 5 μ = 0

ρ = 3 μ = 2

ρ = 3 μ = 1

ρ = 3 μ = 0

ρ = 1 μ = 2

ρ = 1 μ = 1

ρ = 1 μ = 0

Driver

Displacement

Air Spring with Varying Viscosities

Fig. 10. Displacement over time in an airspring with a scripted driver
input. Air densities and dynamic viscosities are as marked, with
thermal conductivity taken to be 𝜅 = 3𝜇.

with u𝑓 being the fluid particle velocity, u𝑠 being the solid face
velocity, and n is the outwards-facing normal.

5 Results
We implemented our method as a solver node in Houdini [Side
Effects Software Inc. 2025], using its built in rigid body and FEM
solvers for solid simulation [Side Effects Software Inc. 2025]. Scene
parameters are provided in Table 1.

5.1 Sealed Bunny
We place a static bunny boundary inside a wind tunnel, shown on
Figure 8. The exterior fluid is initialized with a velocity of 𝑢𝑥 = 0.1
lengthwise across the bunny, while the interior fluid is initialized
with zero velocity. Inflow and outflow boundaries are placed at
either end of the wind tunnel to maintain the exterior fluid velocity.

We simulate this watertight bunny boundary with both our leak-
proof Voronoi stitching algorithm, and a naive algorithm of just
using the existing Voronoi mesh with immersed solid boundary
treatment. That is, the immersed solids still enforce the defined in
Section 4.5. We find that our leakproof treatment retains the original
fluid values up to machine single-precision, while the leaky bunny
quickly gains velocity induced by the exterior wind, as shown on
Figure 9.

As a stress test of our stitching algorithm, we also simulated this
with the same exterior fluid particles, but seed only a single fluid
particle on the bunny interior. We find that the stitching algorithm
is able to correctly assign all cells inside the bunny to that single
particle. This means the entire geometry is represented by a single
particle’s state. This state remained fully watertight and experienced
no flux with the external fluid, thus retaining its original values up
to machine precision.

5.2 Air Spring
Figure 10 shows the displacement from a simulated air spring, con-
sisting of a sealed vertical chamber with two pistons constrained to
vertical motion. The bottom piston is a scripted driver piston, while
the top piston is allowed to freely move while experiencing gravity
pulling it down and the pressure of the enclosed air pushing it up.
Demonstrating that our method can be expanded into viscous

fluids, we introduce an extra viscous flux term to our numerical
flux:

𝐹 𝑣𝑖𝑠𝑐 · n =


0

𝜏𝑥 𝑗𝑛 𝑗
𝜏𝑦 𝑗𝑛 𝑗
𝜏𝑧 𝑗𝑛 𝑗

𝑢𝑖𝜏𝑖 𝑗𝑛 𝑗 − 𝑞 𝑗𝑛 𝑗


, (9)

where 𝑖, 𝑗 are Einstein summation indices for three spatial dimen-
sions. 𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · u
)
produces the viscous stress

tensor with dynamic viscosity 𝜇, and the heat flux is given by
𝑞 𝑗 = −𝜅 𝜕𝑇

𝜕𝑥 𝑗
with thermal conductivity 𝜅. Temperature 𝑇 was com-

puted via ideal gas law 𝑃/𝜌 = 𝑅𝑇 , with 𝑅 taken to be 1 in simulation
units for the purpose of this example.

A render of a single travelling pulse is shown on Figure 11. We see
that since sound speed decreases as density increases (𝑐𝑠 =

√︁
𝛾𝑃/𝜌),

the follower piston takes longer to respond with increasing density.
This has the added benefit of stretching out waves, thus smoothing
out and reducing the follower’s displacement. We also see that
increasing viscosity has a similar effect, blending out sharp waves
caused by sudden movements of the driver.

5.3 Stomp Rocket
A rocket mass is placed above an air-filled tube, connected to an air-
filled reservoir through a u-bend. A driver “foot” is rapidly pushed
down, sending air through the u-bend and into the reservoir, where

ρ=1 ρ=5ρ=3

μ=0

μ=1

μ=2

Fig. 11. Cutaway renders of pressure for airsprings of various den-
sities and dynamic viscosities depicting a single propagating sine
wave at 𝑡 = 0.4, 0.8, 1.2.
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Table 1. Scene parameters for presented examples. U𝐿 and U𝑅 represent the left and right states (or exterior and interior states, as prescribed in the problem)
respectively, with 𝜌 , 𝑢, 𝑃 being fluid density, velocity, and pressure. Velocity is given as a scalar for the axis relevant to the problem, all other velocity
components are 0. #𝑃 is the number of fluid particles and #𝑉 is the number of solid vertices. Machines used for computation were: an M1 Macbook Pro with
32GB RAM (Mac), an 8-core AMD R7 1700 CPU with 64GB RAM (PC), and a 32-core AMD Threadripper 2990WX with 128 GB of RAM (Server).

U𝐿 U𝑅 Fluid Solid
𝜌 𝑢 𝑃 𝜌 𝑢 𝑃 Domain #Frames Time #𝑃 #𝑉 Machine s/Frame

Sealed Bunny
Leakproof 1 0.1 1 1 0 1 2 x 2 x 2 360 3 2652 6938 Static Mac 29.67

Leaky 1 0.1 1 1 0 1 2 x 2 x 2 360 3 2652 6948 Static Mac 24.00
Air Spring Var. 0 4 - - - 1 x 9 x 1 7200 15 672 263 Scripted

263 Rigid
433 Static

Server 1.74

Stomp Rocket Var. 0 4 - - - 3 x 4 x 2 1200 5 955 262 Scripted
258 Rigid
816 Static

Server 0.85

Asteroid 1 Var. 1 - - - 1 x 1 x 1 1920 2 22336 674 Rigid Server 135.91
Champagne 1 0 1 10 0 10 1 x 1 x 1 1920 1 732 463 Rigid

8382 Static
PC 30.94

Balloon 1 0 6 - - - 10 x 10 x 10 4800 10 1350 824 Deformable PC 8.25
Fan

Square Duct 1 0 20 - - - 1.5 x 1.5 x 5 4800 20 5512 2395 Scripted Server 16.32
Circular Duct 1 0 20 - - - 1.5 x 1.5 x 5 4800 20 3703 2395 Scripted

2391 Static
Server 16.25

it pushes the rocket out; we plot height of the rocket over time
on Figure 12. We test a variety of sound speed by modulating the
density of the internal fluid, and see that fluids with lower sound
speeds achieve higher overall heights.
Although the trajectory of the foot is the same for all tests, the

work done is larger for lower sound speeds. As sound speed de-
creases, the propagating wave moves slower, therefore more gas
“piles” up, increasing pressure and therefore total work done. This
increased work translates to faster upwards velocity on the rocket.
On the opposite limit is the incompressible case, where the rocket
will only travel the same distance as the foot travels down.

5.4 Asteroid
To demonstrate that our method handles both subsonic and super-
sonic flow around solids, we simulate fluid flow around Asteroid
4486 Mithra [NASA Science 2025] Three different flow speeds and
their corresponding mach numbers are shown on Figure 13, with
the ground truth Mach cones shown as white lines.
We note one deficiency with our current method is the loss of

resolution in the supersonic wake. Because the fluid particles move
with the velocity, the wakes tend to become underresolved. This
is especially problematic for highly supersonic flow, such as the
rightmost case, where no particles at all are found in the wake.
Our Voronoi discretization fills this in with the high pressure data
from the neighbouring particles, improperly representing the low
pressure wake. This may be resolved with careful particle splitting
whenever particle density becomes too low.

5.5 Champagne Cork
We simulate the ejection of a champagne cork from a bottle, where
internal pressure gradually increases, representing dissolved 𝐶𝑂2
bubbling out of the solution. The cork is initially held in place
by friction between the cork and the neck, which is overcome by
the increasing pressure of the air pocket, after which the cork is
released and shot out of the bottle. Our method seamlessly handles
the topology change as the interior domain merges with the exterior
domain, allowing fluid to start flowing outwards.

Fig. 12. Displacement over time of a stomp rocket with a zoom in of
early time inset.
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u=1
M≈0.845

u=2
M≈1.69

u=5
M≈3.57

Fig. 13. Cutaway view of pressure around an asteroid falling at
various speeds, with the corresponding Mach number as marked.
Ground truth Mach cones are shown as white lines for the two
supersonic cases.

t=0 t=0.3 t=0.6 t=0.9

Fig. 14. Cutaway view of pressure in a champagne bottle launching
a cork held on by friction. Pressure inside the bottle is initially at 2
atm, and slowly rises to 10 atm via an inflow boundary at the wine
surface. Outer domain consists of outflow boundary conditions.

5.6 Balloon Propulsion
We allow an inflated balloon to release its stored air, propelling
itself through the simulation domain, as shown on Figure 1. This
demonstrates complex energy transfer between stored potential
energy of the elastic balloon, potential energy of high pressure
air, into fluid kinetic energy as air escapes the balloon due to the
pressure difference inside and outside the balloon, to kinetic energy
of the balloon as flies around the domain.

5.7 Fan
We push air using a scripted rotating fan along two different duct
geometries, shown on Figure 15. We note that this example relies
heavily on the resolution of subgrid surfaces, as the fan is consider-
ably thinner than the particle resolution. Even here, our method is
able to transfer velocity from the solid to the fluid phase.

We see that the circular duct is able to more efficiently accelerate
air, as shown by the greater pressure gradient across the fan, with
the square duct demonstrating a considerable amount of backflow
at the corners, shown by the negative axial velocities.

6 Discussion and Conclusions
We presented a method for coupling compressible fluids with solids
while respecting the connectivity of the fluid, creating a discretiza-
tion that is leakproof only when required, and flow permissive other-
wise. Our method leverages the Voronoi diagram to partition space,
modifying it to conform to solid boundaries and allow for natural
handling of force transfer between the solid and fluid regimes.

(a) Square Duct (b) Circular Duct

Fig. 15. Cutaway view of the pressure gradient induced as a rotating
fan pushes air forwards (above), and streamlines coloured by the
axial flow velocity (below), for two different duct geometries. Smoke
was generated in post-processing, using our computed velocity field.

We identify extensions of our work that are ripe avenues for
future research. In particular, because of the explicit nature of our
method, flux computation and advection are extremely fast and
embarrassingly parallelizable. Our method, however, is significantly
bottlenecked by the cost of computing the Voronoi diagram. Our
current implementation uses Houdini’s built-in library, which re-
computes the Voronoi structure at each timestep, taking up 85% of
our simulation runtime. Leveraging temporal coherence to update
the previous timestep’s structure is a promising method for accel-
erating [Guibas 2018]. We, however, note that the diagram is only
required for connectivity and face areas. If there was a method for
approximating face areas while maintaining the same connectivity
properties without fully computing a Voronoi diagram, the method
may become significantly faster.
Additionally, the modifications to the Voronoi does sidestep the

true intended structure, which is a visibility-constrained Voronoi.
That is, every cell should have the domain of every point in space
closest to it, while accounting for visibility constraints (the solid
boundaries). Imagine the source points growing in the domain given
some occluding planes, the points would propagate out waves that
naturally bend around the ends of the occluding planes. Some work
exists for rectilinear occluders in 2D [Tsin and Wang 1996], but
extensions to arbitrary barriers in 3D remain an open problem.
Similar work can also be used for more accurate intracell gradients,
as gradients to faces should vary according to occluders within these
cells.
We also found that in certain examples, such as the supersonic

wake in Section 5.4, the Lagrangian particles become underresolved.
This could be alleviated via a particle splitting scheme wherever
local particle density becomes too low. We emphasize, however, that
our method still maintains our desired connectivity property even
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when resolution drops like this, with the neighbouring particles
simply extending their domains into the underresolved regions.

Finally, because of our choice of explicit method, coupling is han-
dled by themultiple timestepping. That is, fluid imposes some bound-
ary condition on the solid, which evolves and imposes a boundary
condition onto the liquid. A more accurate approach would be to
find the force balance between the two regimeswithin each timestep,
such as with a Newton iterative solver.

Research on compressible flow is typically driven by applications
in science and engineering, some of which fall under ethically grey
domains. Beyond technical novelty, we hope that our work high-
lights the rich visual and physical phenomena that emerge from
advancing algorithms in comppressible flow, and that it encourages
further exploration in creative and constructive directions.
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